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MCE 403: HEAT TRANSFER (3 UNITS) 

Theory of steady state heat conduction, convection and radiation.  Dimensional 

analysis and similitude in heat transfer theory. Analogy between mass and momentum 

transfer, Sunday layer flows relations use in convection heat transfer calculations.  

Materials and design of heat exchange.  Introduction to mass transfer, analogy 

between heat and mass transfer. 

Introduction: 

Heat transfer (or heat) is energy in transit due to temperature difference. 

There are three modes of heat transfer. 

When a temperature gradient exists in a stationary medium, which may be a solid or a 

fluid, we use the term conduct ion to refer to the heat transfer that will occur across 

the medium. 

Conversion refers to heat transfer that will occur between a surface and a moving fluid 

when they are at different temperatures. 

Thermal radiation is energy omitted by matter that is at a fruit temperature.  

- To update heat exchange 

- Radiation heat transfer 

- Conversion heat transfer 

- Conduction heat transfer 

- Mass transfer 

Relevance of Heat Transfer 

- Indeed a relevant subject in many industrial and environmental problems. 

- In energy production and conversion; i.e. in the generation of electrical power 

whether through nuclear fission or fusion, the combustion of fossil fuels, 

magneto hydrodynamic process, or the use of geothermal, energy sources, there 

are numerous heat transfer problems that must be solved. 



2 
Prepared by Prof. WAHEED, Mufutau Adekojo 

- Development of solar energy conversion systems for space heating, a, well as 

for electric power production. 

- In propulsion system such as internal combustion, gas turbine, and rocket 

engines. 

- Designs of convectional spouse and water heading system, in the design of 

incinerator and cryogenic storage equipment, in the cooking of electronic 

equipment, in the design of refrigeration and air conditioning systems, and in 

many manufacturing processes. 

- Also relevant to air and water pollution and strongly influences local and global 

climate. 

Theory of heat transfer by conduction. 

All matters consist of roleenless that are in random translational motion.  Higher 

temperature, are associated with higher molecular energies, and when neighbouring 

molecules collide, as they are constantly doing, a transit, of energy from the more 

energetic to the less energetic molecules must occur.  Energy transfer by conduction 

occurs in the direction of decreasing temperature. 

The amount of decreasing temperature. 

The amount of energy transfer by indirection between two surfaces ban be determined 

by Fourier’s law.  For one-dimensional plane will show below, the heat flute q11π 13 

given as.       T 

qn
1 =     

q =   q11    T1           T(X)  T2
  

         L        X   

Where qn
1 is the heat transfer rate in the π direction per unit area perpendicular to the 

direction of transfer, and is proportional to the temperature gradient T/ π in this 



3 
Prepared by Prof. WAHEED, Mufutau Adekojo 

direction.  The proportionality constant k (w/m.k) is a transport property known as the 

thermal conductivity.  Thermal conductivity is a characteristic of the wall material. 

Example 

The wall of an industrial furnace is constructed firm 0.15.m thick fireclay brick hang a 

thermal conductivity of 1.7w/m.k measurements made during steady-state operation 

reveal temperatures of 1,400 and 1150k at the inner and outer surfaces respectively.  

What is the rate of heat loss through a wall treat is 0.5m by 3.0m on a side?  

 

    

 

 

 

 

   qx       qxtdn 

 

            dx 

Consider the one-dimensional system shown above, the unsteady energy balance may 

be written as follows: 

Energy conducted in left face + heat generated within element = change in internal 

energy + energy conducted out right fork. 

The energy quantities are given as follows:  

Energy in left face = qx  =  

Energy generated within element =  
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Change generated in internal energy =  

 

Energy out right face =  

       

 

where q = energy generated per unit volume 

 c  =  specific heat of material 

 p =   density 

 

Combining the relations above gives 

 

or  

This is the one-dimensional heat conduction equation. 

The energy balance in 3 – dimensional heat 

Conduction is 

qx+ qy + qz +qgln =   qntdπ + qyTdy
 + qz td7 +  

This result into 

 

For constant k 
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Where x =  called thermal diffusivity 

This equation in cylindrical coordinates: 

 

Spherical coordinate 

 

 

Steady state one dimensional heat flow in cartesion coordinate (no heat generation) 

 

With heat same      

 

Two – D steady state no heat gen 

  

Applications of founer’s law of heat conduction in  systems. 

The plane wall 

 

   T1        T2 

   Δx 

 q =  - KA  for constant k 
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= -  (T2 – T1) 

If K = K(T) = K0 (1 + βT) 

 

  q = - AK0(1 + βT)  

 

  q =  { (T2 – T1) +  (T2
2 – T1 2) } 

 

Composite Wall 

 
Cross section area A 
      A B    C         q 
 

  1       2  3  

 

 q = KAA   = - KBA    = -KCA   

 

Heat flow is the same through all sections solving their three equations simultaneously 

 q =   

 

  

 

RA        RB     RC 

 

T1      T2         T3    T4 
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Series and parallel one-dimensions 1 heat transfer through a composite wall 

   

B F 

 

A C E 

  G 

 D 
 1 2 3 4 5 

 
           RB              RF 

          RC   RE 
   RA        RD        RG 

T1 T2 T3 T4 T5 

 

The one-dimensional heat flow equation for this type or problem may be written 

  q =  

 

Where REL are the thermal resistances of the various materials. 

 

 

Radial Systems – Cylinders 

temperature difference 

= Tt – T0 

Ar = 2πrl 

       r0   rc 

Fourier’s low : qr = - KAr  
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qr = - 2krl  

 

 

with the boundary conditions 

T =  T0 at r = r0 

 

T =  Ti at r = ri 

Solving: q  

 

There thermol resistance in this O.K. is 

REL =       

 

The thermal resistance for three – layer system is  

 

 q  =   

 

 

             

         r1 

      ro    r2 

    T1 

                r3  

           r4 

    T4 
 

RA        RB     RC 
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Convection boundary conditions 

 

qcmv  =   hA (Tw – Tw) 

 =  

 

Overall heat-transfer coefficient 

 
Fluid A       Fluid B    q = h1A (TA – T1)  =  (T1 – T2)  =  h2 A (T2 - TB)  
     TA   
             T1     T2 

  h1      h2              

TB      q =      

 

VhA is used to represent the convection resistance. 

The overall heat transfer by combined conduction and convection is expressed in 

terms of an overall heat transfer coefficient . 

- q = UA Toverall 

where  =    

 

Plane Wall with heat sources 

   

 

With b.c. T = Tw at x =  L 
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Solving 

T=  

Since temperature must be the same on each side of the wall       C1 = 0 

C2 = T0 

 

T – T0  =  

 

n + x  = - L 

 

Tw – T0  =       

 

 
 

Total heat generated = 2  

 

=  

Temperature gradient at the wall 

 

 x = L  = (Tw – T0)  / = L 

 

= (Tw – T0)   

 

Then   = - K (Tw – T0)    = L 

 

and  T0  =  
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Plane Wall : Fixed surface Temperatures. 

 

Consider a one-dimensional, steady-state heat conduction problem in a plane wall of 

homogeneous materials having constant thermal conductivity and each face is held at 

a constant uniform temperature as shown in the figure below: 

 

    q/A 

T1 

      T2 

 
x1 x x2 

 

 

Starting from the fourier’s equation 

 q = -KA  

 

Separating the variables and integrating the resulting expression given 

 
 

or  q =  

 

This equation can be rearranged as  

q =   =  
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Note that the resistance to the heat flow is directly proportional to the material 

thickness, inversely proportions to the material thermal conductivity, and inversely 

proportional to the area normal to the direction of heat transfer. 

 

These principles are readily extended to the case of a composite plane wall as shown 

in the figure below: 

 
 
 
 
       q  a      
 b 
 c 
 

        1        2     3   4 
 

 
             

 

T1      T2         T3    T4 

 

In the steady state the heat transfer rate entering the left face is the same as that 

leaving the right face. Thus: 

q =    and   q =   q  =   

 

together these gives 

q =   

 

i.e. q =  
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thermal resistence 2k  =  

݅ = l 

Where n is the number of different wall layers.  Note that this is valid only if the 

effects of connection on the heat transfer on the external walls are neglected. 

 

Radial System – cylinders 

 

Consider a long cylinder of inside radius rc, outside radius r0, and length L, such as the 

one shown below.  We expose the cylinder to a temperature differential Ti – T0 and 

assumed that the heat flows in a radial direction so that the only space coordinate 

needed to specify the system is r 

 

     q 

          ri 

        r0    

 

Fourier’s law for system in cylindrical coordinate becomes: 

 qr = -KAr  

 

Ar = 2πrl 

 

qr = 2πkrl  

 

with the boundery conditions 

T = Ti at r = ri 

 

T = T0 at r  = r0 
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q =  

 

where the thermal resistance 

R =  

 

 

 
 
 
          T1 r1 

        r2   T2 

   A             r3    T3  

   
B         r4 

  C  r5 T4 
  D  T5 

 

  T1         T2          T3              T4           T5 

 

 
 

For multiple-layer cylindrical walls, i.e. four layers as shown above, the heat transfer 

rate is: 

q =  

    

Z R =   

 

Spherical systems may be treated as one-dimensional when the temperature is a 

function of radius only for s3eal system the heat transfer rate q is given as 

 q =  
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convection boundery conditions 

 

convection heat transfer can be calculate from  

 q  =  hA(Tw – T0) 

 =  

 

The overall heat-transfer coefficient. 

 

Consider the plane wall shown below exposed to a hot fluid A on one side and a 

cooker fluid B on the other side. 

 

The heat transfer is expressed by 

 

q =  h1A(TA – T1) =  (T1 – T2)  = h2A (T1 – T2) 

 

     TA 
 

         h1       h2 

T1                TB     T2  

q1 
 

The overall heat transfer is calculated as the ratio of the overall temperature difference 

to the sum of the thermal resistance: 

 

 q   =    

 

note that 1/hA is used to represent the conversion resistance.  The overall heat transfer 

by combined conduction and convection is frequently expressed in terms of an overall 

heat-transfer coefficient U, defined by the relation: 



16 
Prepared by Prof. WAHEED, Mufutau Adekojo 

 q = UA  Toverall 

Where U =  

 

T0      T1         T2    T3 

 
 

For a hollow cylinder exposed to a convection environment on its inner and outer 

surfaces, the electrical resistance analogy would appear as shown in the figure below: 
 

TA      Ti         T0    TB 

 

 

 

Where TA and TB are the two fluid temperatures note that the area of convection is not 

the same for both fluids in this case.  These areas depend on the inside tube diameter 

and wall thickness.  In this case the overall heat transfer would be expressed by: 

 q =   

The terms Ai and A0 represent the inside and outside surface areas of the inner 

tube.  The overall heat transfer co-efficient may be based on either the inside or 

the outside area of the tube 

U   =  

 

U0  =  
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Critical thickness of insulation 

 

Consider a layer of insulation which might be installed around a circular pipe as 

shown below : 

 
 
    ri       hi     Tw 
 

     Ti 
 
 

 

The inner temperature of the insulation is fixed at Ti and the outer surface is exposed 

to a convection environment at Tw.  The heat transfer is  

 

 q =  

 

The radius of the outer insulation for maximum heat transfer is obtained by interating 

the above expression with respect to  

 

   

  r0 =  

 

These radious the critical radius – of – insulation.  If the actual outer radius is less than 

rentical. Then the heat transfer will be increased by adding more insulation and vis 

vesa. 

 

Examples: 

An exterior wall of a house may be approximated by a 4 – in layer of common brick 

of thermal conductivity k = 0.7W/M.0C followed by a 1.5 in layer of gypsum plaster 
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of thermal conductivity k = 0.48 W/M.0C.  what thickness of loosely packed rock-

wool insulation k = 0.065 W/M.0C should be added to reduce the heat loss or gain 

through the wall by 80 percent? 

 

Solution: 

The overall heat loss will be given by 

 

q  =   

 

Because the heat loss with the rock-wool insulation will be only 20% (80% reduction) 

of that before insulation. 

 

   q with insulation  = 0.2  = Z REL without insulation  

q without insulation        Z REL with insulation 

 

for the brick and plaster of unit area: 

 

Rb = 0C/W 

 

Rp = 0C/W 

 

The thermal resistance without insulation is 

 

 R = 0.145  +   0.079 

 

  = 0.224m2  0C/W 

 

Then R with insulation  =  
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    = 1.122 M2 0C/W 

This represents the sum of our previous value and the resistance for the rock wool. 

 

1.122 = 0.224  +  Rrw 

 

Rrw = 0.898 =  

 

 
 

 

Example 2 

 

A thick-walked tube of stainless steel of thermal conductivity K = 19 W/M.0C with 2.cm 

internal diameter and 4cm outer diameter is covered with a 3-cm layer of asbestos insulation 

of thermal conductivity K = 0.2 W/M.0C.  If the inside wall temperature of the pipe is 

maintained at 6000C and the outside of the insulation at 1000C, calculate the heat loss per 

meter of length. 

 

Solution: 

Heat flow is given by: 

 

 
  

 
 

=  680w/m 

 

Examples 3 
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Calculate the critical radius of insulation for asbestos of thermal conductivity k = 0.17 

w/m.0C surrounding a pipe and exposed to room air with h = 3.0w/m2 0C.  Calculate 

the heat loss from a 2000C. 5.0cm diameter pipe when covered with the critical radius 

of insulation and without insulation. 

 

Solution: 

rcritical   

 

=  0.0567m  =    5.67cm 

 

 

The inside radius of the insulation is 5/2  = 2.5cm 

 

 

 

Without insulation, the convection from the outer surface of the pipe is  

  

 

= 2  

 

= 84.8w/m 

 

So, the addition of 3.17cm (5.67 – 2.5) of insulation actually increase the heat transfer 

by 25%. 

 

 

Heat – source systems. 
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In a number of engineering applications, heat transfer is accompanied with internal 

heat generation.  Examples include application in nuclear reactors, electrical 

conductors and chemically reacting systems. 

 

Plane Wall. 

 

Consider the plane wall with uniform internal conversion of energy.  Assuming 

constant thermal conductivity and very large dimensions in the y – and t – direction so 

that the temperature gradient is significant in the x – direction only, the passion 

equation reduces to  

  

 

 Which is a second order ordinary differential equation.  Two boundary conditions are 

sufficient in determination of the specific solution for T(x).  These are T= T1 at x = 0 

and T = T2 ad x = 2L. 

 
 
 
T1  
        T2 
 
   2L 
 

Integratory equation (1) wrt x yields 

 

T =  

 

Using the boundary conditions 

  

:.  T  =    ……………. (2) 
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For simple case where T1  = T2  = T0 

   C2  =  Ts and C1  =   

 

:.  T  =   Ts +      ..................... (3) 

 

Differentiating equ. (3) yields 

 
 

 
 

 

So that the heat flux out of the left face is  

q =  - KA  

 

Example: 

Consider a plate with uniform heat generation as discussed in the last section for 

k = 200w/m.k = 40mw/m3, T1 = 1600C at x = 0, T2 = 1000C at x = 2L, and a plate 

thickness of 2cm, determine (a) T(x), (b) q/A at the left face, (c) q/A at the right face, 

and (d) q/A at tje plate center. 

 

(a) using equ. (3) 

 T =  

 = 160 – 103x – 105x2 

(b) obtain  at x = 0 and substitute into fourier’s law.  

   

  =  = -103 k/m 
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  0 = - k 0  =  

   = 200kw/m2  

 

(c) 2L  

   = -5.103k/m 

  2L = 2L  

   = 1mw/m2 

(d) L = -103 - 2 (105) (0.01) 

  = -3.103k/m 

  L =  

 

   = 600kw/m2 

Exercise 

1. Determine an analytical expression for the dimension less temperature (T – T2) 

/ (Tc – Ts) distribution in a plane wall with heat generation q111 given that Tc is 

the temperature at the center of the wall. 

2. Determine an analytical expression for the dimension less temperature 

distribution (T – T0) / (Tw – T0) in a plane wall with heat generation q111 given 

that T = Tw at x = + L and T = T0 at the end plane. 

Cylinder with heat sources. 

 

The temperature distribution in 1 – cylindrical wall can also be determined in an 

analogons fashion to the distribution in plane wall.  For a sufficiently long cylinder the 

temperature may be considered a function of radius only.  The appropriate differential 

equation may be obtained by neglecting the axial atimuth and timo-dependent terms to 

give 

 =  

The boundary conditions are 
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T = Tw    at    r = R 

and heat generated equals heat lost at surface. 

r = R 
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Convective Heat Transfer 

- Methods of calculating convection heat transfer 

- Ways of predicting the value of convection heat transfer coefficient h. 

- To consider the energy balance on the flow system 

- To determine the effect of the flow on the temperature the effect of the flow on 

the temperature gradients in the fluid. 

- The analysis of heat transfer by convection demands a thorough understanding 

of various fluid flow mechanisms.  The study of fluid dynamics is left to the 

fluid mechanics course.  In a similar fashion to the study of boundary layer 

theorem in fluid mechanics, we are also going to look at the thermal boundary 

layer analysis. 

 

Energy equation of the boundary layer. 

The thermal energy equation for an incompressible fluid in Cartesian 

coordinate is: 

    ......... (1) 

Where m  is called the visions dissipation term q is the rate at which energy is 

generated per unit volume. 

 

The left side of equation (1) represent, the net transport of energy into the control 

volume, and the right side represents the sum of the net heat conducted out of the 

control volume, the net visions work done on the element and the energy generated 

rate per unit volume.  

 

The energy equation of the laminar boundary layer can be obtained from equation (i) 

by applying the simplifying assumptions to give 

       ................. (2) 

 

By involving the order of magnitude analysis on equ. (2) it follows that 

          ...............(3) 

 



26 
Prepared by Prof. WAHEED, Mufutau Adekojo 

So that         .......................(4) 

 

       .......................(5) 

 

 
        

 

If the ratio of these quantities is small, 

 

         ......................(6)  

Then the viscous dissipation is small in comparison with the conduction term.  Thus, 

for low-velocity incompressible flow, we have 

 

 

 

 

The thermal boundary layer 

A thermal boundary layer it may be defined as that region where temperature 

gradients are present in the flow.  These temperature gradients would result from a 

heat exchange process between the fluid and the wall. 

 

 

 

 

 

 

 

 

The temperature of the wall is Tw, the temperature of the fluid outside the thermal 

boundary layer is T and the thickness of the thermal boundary layer is designated as   . 
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At the wall, the velocity is zero, and the heat transfer into the fluid takes place by 

conduction.  The heat flux per unit area, q11 

 q11 = k     ........................... (8) 

Firm Newton’s law of cooking : 

q11 = h(Tw – )    ...................... (9) 

 

where h is the convection heat transfer coefficient combining equs. (8) and  (9), we 

have 

h =     ......................(10) 

 

so we need only find the temperature gradient at the wall in order to evaluate the heat-

transfer co-efficient. 

 

The integral energy equation of the boundary layer for constant properties and 

constant free-stream temperature  

 

  ................(11) 

 

Using the cubic polynomial temperature distribution 

     ..................(12) 

 

In equation (11) and after simplification, we obtain 

   .....................(13) 

 

For the case of  is not equal to zero and       ............(14) 

 

For the case of  = 0 
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The parameter pr =   is called the prand H number.  This number relates the relative 

thicknesses of the hydrodynamic and thermal boundary layers.  The kinematic 

viscosity of a fluid conveys information about the rate of which momentum may 

diffuse through the fluid because of molecular motion.  The thermal diffusivity tells us 

the same thing in regard to the diffusion of heat in the fluid. 

The prand tl numbers of most gasses and liquids are more than 0.7 with the exception 

of the prand 11 number of liquid metoils which is of the order of 0.01. 

Now from equation (10) 

       .......................(15) 

 

Substituting for the hydrodynamic boundary layer thickness. 
-1/3   ........................(16) 

 

The non-divisional heat transfer parameter is called Nusselt number NU  

   

       ...................... (17) 

 

Finally, 

NUx = 0.332 pr 1/3  Rex ½ -1/3  ………………(18) 

 

For plate heated from x = x0, or for the plate heated over its entire length, x0 = 0 and 

NUx = 0.332 pr 1/3 Rex ½     .........................(19) 

Equations (18) and (19) express the local values of the heat transfer co-efficient in 

terms of the distance from the leading edge of the plate and the fluid properties for the 

case the = 0. 

h =       ......................(20) 

 

     ……………(21) 
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The above analysis is valid for constant fluid properties.  When there is an appreciable 

variation between wall and free-stream conditions, it is recommended that the 

properties be evaluated at the so-called film temperature Tf defined as  

        ………….(22) 

Constant heat flux 

For the constant-heat-flux case the local Nusbelt number is given by 

       .................(23) 

Nusst it number may be expressed in terms of the wall heat flux and temperature 

difference as  

       ………..(24) 

The average temperature difference along the plate may be obtained by performing the 

integration. 

 

    =   …………(25) 

 

While equation (19) is valid to determine the Nusselt number for friends hanry Prandtl 

number between 0.6 and 5.0, the following equation is valid for under range of prandtl 

number. 

   

Example 1 

Air at 270C and 1 atm flows over a flat plate at a speed of 2m/s Assume that the plate 

is heated over its entire length to a temperature of 600C calculate the heat transfer in 

the first 20cm of the plate and the first 40cm of the place.  The viscosity of air at 270C 

is 1.98 x 10-6 kg/ms.  Assure unit depth in the z-direction. 

 

Solution: 
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Required:  total heat transfer over a certain length of the plate. 

We shall evaluate the properties at the film temperature 

Tf =  = 43.50C 

 

From properties table 

 = 17.36 x 10-6 m2/s  

K = 0.02749 w/m0c 

pr = 0.7 

cp = 1.006 KJ/kg.0C 

 

At  x  = 20 cm 

Rex =   

 = 23.041 

NUx =  

  = 0.332  x  23.04  x 0.  

  = 44.74 

  =  

  = 6.15w/m2 0c 

h  = 2 x 6.15 

  = 12.3w/m2 0C 

The heat flow is  

Q = hA (  

If we assume unit depth in the z direction, 

Q = 12.3  x  0.2  x  (60.27) 

 = 81.18kw 

At x = 40cm 

 
   = 46,082 
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   = 63.28 

 
   = 4.349 w/m2 0c 

   h = 2 x 4.349 

    = 8.698w/m2 0c 

   Q = 8.698 x 0.4 x (60 - 27) 

    = 114.8W 

 

Example 2 

A 1.01W heater is constructed of a glass plate with an electrically conducting film 

which produces a constant heat flux.  The plate is 60 by 60cm and placed in an 

airstream at 270C, 1 atm with U0 = 5m/s.  Calculate the average temperature difference 

along the plate and the temperature difference at the trailing edge. 

 

Solution 

Properties should be evaluated at the film temperature, but we do not know the plate 

temperature so for an initial calculation we take the properties at the free-stream 

conditions of  

    - 270C  = 300k 

    = 16.84 x 1  m2/s, pr = 0.708,  k = 0.02624 w/m 

   ReL =  

    = 1.78 x 105 

 

Using equ. (25) 

  

 =  

 = 248.60C 

Now, we go back and evaluate properties at  
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 Tf =  

From the properties table, we obtain 

 = 27.18 x 10-6 m2/s, Pr = 0.687 and k = 00344w/m0c 

 = ReL =  

  = 1.10 x 105 

  

 

  =  243.60C 

At the end of the plate (x = L = 0.6m the temperature difference is obtained from equs. (13) and (25) 

with the constant 0.453 to give. 

 

   

  = 365.40C 
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Radiation Heat Transfer 

Thermal radiation is that electromagnetic radiation emitted by a body as a result of its 
temperature. There are many types of electromagnetic radiation; thermal radiation is only 
one. Radiation is propagated at the speed of light, 3x108 m/s. The following relation is valid 
between the speed of light, c, the wavelength, λ, and frequency, υ. 

C = λυ 

The unit for λ may be centimeters, angstroms (IA =10-8cm) or micrometers (WM =10-6m) 

 

          Thermal Radiation         INm                  IA 

Log λ, m   

3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 

 
             X- ray 

Radio waves             Infrared   Ultra 
   r rays 

Violet 

                 Visible 
Electromagnetic spectrum  

The propagation of thermal radiation takes place in the form of discrete quanta, each quantum 

having energy of 

                                                E = hυ  

                                      Where h = Planck’s constant    

                                           = 6.625x10-34 J.s.      

Quantum = α particle = having mass, energy, momentum        

Radiation is assumed to be a “photon gas” which may flow from one place to another. Using 
the relativity relation 

                                                E = mc2 = hυ 

                                        m = hυ 
                                                c2          
                                               Momentum =    c  hυ = hυ 
                                                                       c2          c  
Using the principles of quantum-statistical thermodynamics an expression for the energy 
density of radiation per unit volume per unit wavelength is given as  
    Uλ = 8πhcλ-5 

          ehc/λRT-I 
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Where k = bolttmann’s constant 

= 1.38066x10-23 J/molecule.k 

Integrating the energy density over all wavelengths, the total energy emitted is proportional to 
absolute temperature to the fourth power 

    Eb = ϬT4 

The last expression is called the Stefan-Bolttmann’s law. Eb is the energy radiated per unit 
time and per unit area by the ideal radiator 

  Ϭ = Stefan –Bolttann’s constant 

       = 5.669x 10-8w/m2-k4 

The subscript b denotes that this is the radiation from a blackbody, i.e. body that appears 
blank to the eye, and which do not reflect any radiation. It is also considered to absorb all 
radiation incidents upon it. Eb is the emissive power of a blackbody. 

Radiation Properties 

Reflectivity, ℓ, is the fraction of radiant energy reflected by a surface 

Absurptivity, α, is the fraction absorbed, and Transmissivity T, is the fraction transmitted 

Incident radiation  reflected 

  

 Transmitted 

 ℓ + α +I = 1 

most solid bodies do not transmit thermal radiation 

 ℓ + α = 1   for such bodies. 

Reflected radiation   may be described as specular if the angle of incidence is equal to the 
angle of reflection, or as diffuse when an incident been is distributed uniformly in all 
directions after reflection. 

The emissive power of a body E is defined as the energy emitted by the body per unit area 
and per unit time. 

A perfectly block enclosure is the one which absorbs all the incident radiation falling upon it. 

Blockbody Radiation 

A blockbody, or an ideal radiator, is a body which omits and absorbs at any temperature the 
maximum possible amount of radiation at any given wavelength. The ideal radiator is a 
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theoretical concept which sets an upper limit to the emission of radiation in accordance with 
the second law of thermodynamics defining. 

Eb λ = Spectral or monochromatic body emissive power, i.e. radiation quantity at a given 
wavelength. 

Max plank in 1900 using quantum theory showed that 

Eb λ =  C1 

___________λ5
_(exp(c2/λT)-1) 

_____________________________________________________________________ 
Eb λ = monochromatic emissive power of a blackbody at temperature T, kw/m2 

T = absolute temperature of the body 

Eb λ at various temperatures is shown below 

                            Line of maximum 

                                     Eb λ   

   

Eb λ 

  Temperature measuring 

 

 λ 

Note that the higher the temperature the higher is the proportion of the energy emitted at shot 
wavelength and the shorter is the wavelength, λmax for Eb λ max. 

λmax for a given T can be obtained from the  

Wien’s law: 

λmax T = 0.0029 m k 

 

Eb λ 

 

 

 

λmax dλ λ 
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For a given value of T, the total energy emitted per unit time and unit area of blank surface is 
given by  

Eb =ᶋ∞ Eb λ 
(λ) dλ = ϬT4 

Where Ϭ = stefen Bolttmann’s constants 

The ratio of the emissive power of a body to the emissive power of a blackbody at the 
same temperature is equal to the absorptivity of the body. i.e. 

ɚ = E 
       Eb 

This ratio is defined as the emissivity ɛ of the body: 

E = E 
       Eb 
 

So that  E = ɚ 
The last expression is called the Kirchhoff’s identity. 
The emissivity and absorptivity of a body represent the integrated behavior of a material over 
all wavelengths. Real substances emit less radiation than ideal blank surface as measured by 
the emissivity of the material. The emissivity of a material varies with temperature and the 
wavelength of the radiation. 
A gray body is defined such that the monochromatic emissivity E λ of the body is independent 
of wavelength, i.e. E λ constant 
The monochromatic emissivity is defined as the ratio of the monochromatic-emissive power 
of the body, to the monochromatic-emissive power of a blackbody at the same temperature 
and wavelength. 

E λ = E λ 
         Eb λ 

Total emissivity E is related to monochromatic emissivity by noting that 

E = ᶋ∞E λ Eb λ d λ  and   Eb = ᶋ∞ Eb λ d λ ϬT4 

So that  E = E =  ᶋ∞ E λ Eb λ d λ 
        Eb             ϬT4  

Where Eb λ is the emissive power of a blockbody per unit wavelength. If gray body condition 
is imposed, 

E λ = E λ 
The emissivities of various substances vary widely with λ, temperature. The surface 
functional relation for Eb λ was derived by max Planck by introducing the quantum concept 
for electromagnetic energy as:  

Eb λ = u λ c 
   4 
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Or Eb λ =  c1 λ-5 

ec
2
/
 
λT- 1 

 

Where  λ = wavelength 

T = temperature 

C1 = 3.743 x 108 w.Nm4/m2 

C2 = 1.4387 x 108 Nm.k 

In a plot of Eb λ as a function of temperature and wavelength, the maximum points in the 
curves are related by Wien’s displacement laws: 

 λmax T= 2897.6 Nm.k 

Eb λ 1.922k 

 1366k 

 

 

  λ 

It will be observed from the curve that the peak of the curve is shifted to the shorter 
wavelengths for the higher temperatures. This shift in the maximum point of the radiation 
curve explains the charge in color of a body as it is heated 

  

 

           As the body is heated, the maximum intensity is shifted to the shorter wavelengths, and 
the first visible sign of the increase in temperature of the body is a dark- red color, followed 
by bright red, bright yellow and finally white color with the increase in temperature. The 
material also appears much brighter at higher temperature since a large portion of the total 
radiation falls within the visible range. 

The fraction of the total energy radiated between wavelengths 0 and λ is given by 

  Eb o- λ  = ᶋ 
λ   Eb λ   – dλ 

  Eb o -∞   ᶋ 
λ   Eb λ   – dλ 

 

But  Eb λ   =    c1λ-5 

    exp (c2/ λT) - 1 

Dividing both sides by T5 

The concept of a blackbody is an idealization, i.e. a perfect blackbody does not exist 
all surface reflect radiation to some extent, however slight. 



38 
Prepared by Prof. WAHEED, Mufutau Adekojo 

  Eb λ    =  c1     
T5 

    (λT) 5 [exp (c2/ λT) - 1] 
 
For any temperature, the integrals of equation (*) above may be expressed in terms of λT. 
The results have been tabulated by profile. For energy radiated between λ, and λ2

  

 

Eb λ - λ2 = Eb o -∞  (Eb o - λ2) -  Eb o – λ1 

         Eb o -∞  Eb o -∞ 

Note that Eb o -∞ = ϬT4 
= Total radiation emitted over all wavelengths. 

Example 
Consider the sun as a block surface at 10, 0000 R. Find the fraction of the sun’s emitted 
radiant energy which lies in the visible range, from 0.3 to 0.7 micros. 

Solution 

At λ = 0.3 micros 

     Tλ = 0.3 x 10,000 = 3000 

From the radiation functions table 

At    λT = 3000, 

 

Eb o – λ= 0.3 = 0.0254 

    ϬT4 

At    λ= 0.7, λT= 0.7 x 10000 = 7000 

Eb o – λ= 0.7 = 0.4604 

    ϬT4 

Eb o 3– 0.7 = 0.4604 – 0.0254 

    ϬT4 

  = 0.4350 

I.e. 43.5% of the sun’s emission is in the visible range. 

Example 2 

A glass plate 30cm square is used to view radiation from a furnace. The transmissivity of the 
glass is 0.5 from 0.2 to 3.5Nm. The emissivity may be assumed to be 0.3 up to 3.5 Nm and 
0.9 above that. The transmissivity of the glass is zero, except in the range from 0.2 to 
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3.5Nm.Assuming that the furnace is a blackbody at 2000 0C, calculate the energy absorbed in 
the glass and the energy transmitted. 

Solution 

λ = 0.5  for  0.2,  λ  3.5Nm 

E = 0.3  for  0  λ  3.5 Nm 

E = 0.9  for  3.5  λ  ∞Nm 

T = 0   for  0  λ  0.2Nm 

T =    2000 0C = 2273k. 

λ1T = 0.2 x 2273 = 454.6Nmk 

λ2T = 3.5 x 2273 = 7955.5 

 A = 0.32 = 0.09m2 

From the radiation fraction table 

Eb o – λ1 = 0 ; Eb o – λ2 = 0.85443 

    ϬT4 ϬT4 

    ϬT4 = 5.669 x 10-6 x 22734 

 = 1513.3 Kw/m2 

Total incident radiation is  

0.2Nm < > < 3.5Nm =1.5133 x 10-6 x (0.85443.0) x 0.32 

   = 116.4Kw 

Total radiation transmitted = 0.5 x 116.4 = 58.2Kw 

Radiation absorbed = {0.3 x 116.4 = 34.92Kw 

0.9 x (1-0.85443) x 1513.3 x 1513.3 x 0.09 = 17.84Kw} 

Total radiation absorbed = 34.92 x 17.84 = 52.76Kw. 

Radiation Exchange between Surfaces 

Radiative exchange between two or more surfaces depends strongly on the surface 
geometries and orientations, as well as on their radiative properties and temperature. 

To compute radiation exchange between any two surfaces we must first introduce the concept 
of a view factor, also called a configuration or shape factor. 
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The view factor Fij is defined as the fraction of the radiation leaving surface I that is 
intercepted by surface j. 

 aj  

 dAj 

 θj 

 

  Aj, Tj 

 ni θi R  

 

dAi Ai ,Ti 

 

 

Consider an elemental area of surfaces I and j, commented by a line of length R, which forms 
the polar angles θi and θj respectively, with the surface normal’s ni and nj. The values of R, θi 
and θj vary with the position of the elemental areas on Ai and Aj 

The rate at which radiation leaves dAi and is 

 Intercepted by dAj may be expressed as  

 dqi →j = Ii cosθi dAi dwj-i   ----------------------------------------------------------------  (1) 

Where Ii is the intensity of the radiation leaving surface 

i and dwj-i  is the solid angle subtended by dAj when viewed from dAi with dwj-i  = (cosθj dAj) / 
R2 

 dqi →j  = Ii  cosθi cosθj      dAi dAj  -------------------------------------------------  (2) 

 R2 

If surface i units and reflects diffusely. 

Ii =  Ji -----------------------------------------------------------------------    (3) 

   Π 

Where Ji is the radiative flux called radiosity, where accounts for all the radiant energy 
leaving a surface. Substituting the last expression in the penultimate one,  

 dqi →j  = Ji  cosθi cosθj      dAi dAj  -------------------------------------------------  (4) 

 Π R2 
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The total rate at which radiation leaves surface I and is intercepted by j is 
 q i →j = Ji ʃAi ʃAj     cosθi cosθj      dAi dAj     -------------------------------  (5) 

     Π R2 
From the definition of the view factor 
 Fij =    qi →j      ----------------------------------- (6) 

   Ai Ji  

Fij = 1 ʃAi ʃAj cosθi cosθj      dAi dAj --------------------- (7) 
 Ai Π R2 
 

Similarly, the view factor Fji is defined as the fraction of the radiation that leaves Aj and is 
intercepted by Ai  

Fji = 1 ʃAi ʃAj cosθi cosθj      dAi dAj --------------------- (8) 
 Aj Π R2 
 

Equation 7 and 8 may be used to determine the view factor associated with any two surfaces 
that are diffuse emitters and reflectors and have uniform radiosity. 

From the equation 7 and 8. It can be shown that 

 Ai Fij = Aj Fji -------------------------------------------------------------------- (9) 

This expression is termed the reciprocity relation. It is useful in determining one view factor 
from the knowledge of the other. 

 

Relations between shape factors 

Another important view factor relation pertains to the surface of an enclosure. From the 
definition of the view factor, the summation rule  

 N 

ϩ Fij = 1 ----------------------------------------------------------------- (10) 
j=1 
 

May be applied to each of the N surface of the enclossive. Where the term Fii represents the 
fraction of the radiation that leaves surface I and is directly intercepted by i. For concave 
surface, Fii  0, but for plane or convex, surface, Fii = 0. 

Example 3 

Consider a diffuse circular disk of diameter D and Aj and a plane diffuse surface of area Ai 
<< Aj. The surfaces are parallel, and Ai is located at a distance L from the center of Aj. 
Obtain an expression for the view factor Fij. 
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Solution dr 

 

 dAj D 

 

 Aj R θj 

 θi    L 

                                           Ai  

The desired view factor may be obtained from eqn. (7) 

Fij = 1 ʃAi ʃAj cosθi cosθj      dAi dAj  
 Ai Π R2 
Recognizing that θi, θj and R are approximately independent of position on Ai, this expression 
reduces to 

Fij  =  ʃAj      cosθi cosθj      dAj 
                                   Π R2  

Or, with  θi = θj = θ 

Fij =  ʃAj     cos2θ   dAj 
                           Π R2 

With R2 = r2 + L2, cosθ = L/R, dAj = 2 Πrdr 

 Fij = 2 L2 ᶋD/2    rdr            =          D2 
(r2 + L2)2                D2 +4L2 

 

Example 4 

Determine the view factors F12 andF21 for the following geometries: 

 A1                                                                                                                                   D 

 A1  

L =D L A1        L =D  A2 

 A2 A2                                A3 

 (i) (2) A3 

 



43 
Prepared by Prof. WAHEED, Mufutau Adekojo 

(1) Sphere of diameter D inside a cubical box of length L= D 
(2) Diagonal partition within a long square diet\End and side of a circular tube of equal 

length and diameter. 

Solution 

The desired view factors may be obtained from inspection, the reciprocity rule, the 
summation rule, and or use the charts. 

1. Sphere within a cube: 
By inspection, F12 = 1 

By reciprocity, F21 = A1  F12 =   ΠD2   x 1 = Π 

     A2   6 L2                  6 
2. Partition within a square duet: 
3. From summation rule: 

F11 + F12 + F13 = 1 

F11 = 0 

By symmetry, F12= + F13 

Hence, F12 = 0.50 

By receptivity, 

F21 = A1 F12 =       L x 0.5 
          A2            2 

   

 = 0.71 

3 Circular tube: 
    From figure, with r3/L = 0.5 and L/r1 = 21 

 F13 = 0.17 
From summation rule, 

F11 + F12 + F13 = 1 
Or with F11 =0, F12 = 1 - F13 =0.83 
From reciprocity,  

F21 =    A1     F12   =   ΠD2/ 4    x 0.83 
      A2                Π DL  

  
= 0.21. 
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Blackbody radiation Exchange 
Consider radiation exchange between two blank surfaces of arbitrary shape. Defining  
 qi →j = (Ai Ji ) Fij      ------------------------(11) 
 
Or since radiosity equal emissive power for a blank surface (Ji= Ebi)  
֓q0→j =Ai Fij Ebi      -------------------------(12) 
Similarly, qj→i =Ai Fij Ebi          -------------------------(13) 
The net radiative exchange between the two surfaces may then be defined as 

qij = qo→i  - qj→c         ------------------------(14) 
From which we obtain 

qij =Ai Fij Ebi   - Aj Fji Ebj     ------------------------(15) 
Ai Fij Ϭ (Ti

4 – Tj
4)         ------------------------(16) 

Equation (16) provides the net rate at which radiation leaves surface i as a result of its 
interaction with j, which is equal to the net rate at which j gowns radiation due to its 
interaction with i. The net radiation transfer from an enclosure of black surfaces with N 
surfaces maintained at different temperatures may be expressed as  
 qi ൌN  Ai Fij Ϭ (Ti

4 – Tj
4)        -----------------------(17) 

 ϩ  

   jൌ1 
 
Example 5 
Two parallel plates 0.5 by 1.0m are spaced 0.5m apart. One plate is maintained at 10000c and 
the other at 5000c. What is the net radiant heat exchange between the two plates? 

Solution 

The ratios for use with radiation shape factor for radiation between parallel rectangles are 

 y = 0.5 = 1.0;  x = 1.0 = 2.0 
 D           0.5                  D           0.5 
So that F12 = 0.285 

The heat transfer is calculated from 

q =A1 F12 (Ebi – Eb2) 

 =Ϭ A1 F12 (T1
4 – T2

4) 

 = 5.669 x10-8 x 0.5 x 0.285 (12734- 7734) 

 Ƹ ൌ 18.33kw 

Example 6 

A furnace cavity which is in the form of a cylinder of 75mm diameter and 150mm length 
is open at one end to large surroundings that are at 270c. The sides and bottom may be 
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approximated  as  blacksides,  are  heated  electrically  are  well  insulated,  and  are 
maintained at temperatures of 1350 and 16500c , respectively. 

 D 

 Side, T1 

 L    Heater wire 

      Insulation 

 Bottom, T2 

How much power is required to maintain the furnace conditions? 

Solution 

Known: Surface temperature of cylinder furnace 

Find: Power required maintaining prescribed temperatures. 

Schematic: q Tsur = 300k     A3, T3 = Tsur 

 

L = 0.15m A1, 13 = 13500c 

          A2, T2 = 16500c 

 
 D = 0.075m 
Assumptions: 

1. Interior surfaces behave as blackbodies 
2. Heat transfer by convection is iregligible  
3. Outer surface of furnace is adiabatic. 

Analysis: 
The power needed to operate the furnace at the prescribed conditions must balance heat 
losses from the furnace. Subject to the foregoing assumptions, the only heat loss is by 
radiation through the opening, which may be treated as a hypothetical surface of area A3. 
Because the surroundings are large, radiation exchange between the furnace and the surface 
as a blackbody at T3 = Tsur. The heat loss may then be expressed as 
 q = q13 + q23 

q = A1F13 Ϭ (T1
4 – T3

4) + A2F23 Ϭ (T2
4 – T3

4) 
From the figure for the view factor for coaxial parallel disks, it follows that, with rj/L = 
0.0375/0.15 = 0.25 and L/ri = 0.15/0.0375 = 4 , F23 = 0.06. 
From the summation rule 
 F21 1–F23 = 1 – 0.06 = 0.94 
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And from reciprocity 
 F12 =   A1   F21 = Π (0.075)2/ 4     x 0.94  = 0.118 

         A2            Π (0.075 x 0.15)  
 

From symmetry, F13 = F12 

֓ q = (Π x 0.075 x 0.15) x 0.118 x 5.67 x 10-8 x 10.-8 x (16234 - 3004) 

 + Π     x0.0752 x0.06 x 5.67 x 10-8 x (19234 - 3004) 
 4 

= 1639 + 205 

Q = 1844w 

Heat exchange between non blackbodies 

Radiation heat transfer involving non blackbodies is much more complex, for all the energy 
striking a surface will not be absorbed; part will be reflected back to another heat-transfer 
surface, and part may be reflected out of the system entirely. The problem can become 
complicated because the radiant energy can be reflected back and forth between the heat- 
transfer surfaces several times. The analysis of the problem must take into consideration these 
multiple reflection of correct conclusions are to be drawn. 

We assume that all surfaces considered in our analysis are diffuse that all uniform in 
temperature and that the and emissive properties are constant over all the surface. Two new 
terms may be defined: 

G: Irradiation 

      = total radiation incident upon a surface per unit time and per unit area. 

J: radiosity 

    = total radiation which leaves a surface per unit time and per unit area. 

It is also assured that the radiosity and irradiation are uniform over each surface. The 
radiosity is the sum of the energy emitted and the energy reflected when no energy is 
transmitted, 

 J = ƸEb ൌ ℓ G        ------------------- (18) 

Assumed that T = 0 

֓ ℓ = 1 = ɚ = 1- Ƹ 

So that 

J = ƸEb ൅ ሺ1‐Ƹሻ G        ------------------- (19) 
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The net energy leaving the surface is the difference between the radiosity and the irradiation: 
(see figure behind this page) 

q = A (J - G) = A (Eb ‐ ɚG)       -------------------- (20) 

Solving for G in term of J from eqn (19) and substituting in (20) 

֓ q ൌ ƸA ሺEb ‐Jሻ 

1 – Ƹ 

 

q ൌ      ሺEb ‐Jሻ            ------------------- (21) 

         (1 - Ƹሻ/ ƸA 

This transfer, which may be represented by the network element as shown in the figure 
below, is associated with the during potencial. 

            J q G J 

(a) T, A, E 

JA GA EA  PGA GA 

S LƸ 
  ƸA 
  ሺbሻ  q      ሺcሻ  q   

  q  Eb  ሺdሻ 

Radiation  exchange  in  an  enclosure  of  diffuse,  gray  surfaces with  a  non  participating 
medium. ሺaሻ Schematic of the enclosure 

ሺbሻRadiative balance according to equation ሺ20aሻ 

ሺcሻ Radiative balance according to equation ሺ20bሻ 

ሺdሻ  Network  element  representing  to  equation  the  net  radiation  transfer  from  a           
surface. 

ሺEb ‐Jሻ and a surface radiative resistance of the form  (1 - Ƹሻ/ ƸA. Hence if the emissive 
power  that  surface  would  have  if  it  were  black  exceeds  its  radiosity,  there  is  net 
radiation heat transfer from the surface; if the inverse is time, the net transfer is to the 
surface. 

           1‐ Ƹ 
  J         ƸA  
  Eb  q   
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Radiation Exchange between surfaces 

Now  consider  the  exchange  of  radiant  energy by  two  surfaces A1and A2. Of  that  total 
radiation which leaves surface I, the amount that reaches surface 2 is 

  J1 A1 F12 

And of that total energy leaving surface 2, the amount that reaches surface 1 is  

          J2 A2 F21 

The net interchange between the two surfaces is 

 q12 = J1 A1 F12 ‐ J2 A2 F21 

But     A1 F12 ൌ A2 F21 

So that   q12 = (J1 –J2) A1 F12 = (J1-J2) A2 F21 

 q12 =  J1- J2       -------------------- (22) 
                    1/ A1 F12 
 
Equation (21) may be written in a general form to determine qi, which is the rate at which 
radiation leaves surface i, as 

 qi =  Ebi – Ji            ---------------------- (23) 
                      (1/ Ƹi ) / Ƹi Ai 
 
and equation (22) as 
 
qi =  N                                          ----------------------- (24) 
             Ϩ      Ai Fij (J1 –J2) = N          qij       
            j =1                   Ϩ 
            j =1 
 
This result equation the net rate of radiation transfer from surface I, qi, to the sum of 
components qij related to radiative exchange with the other surfaces. Each component may be 
represented by a network element for which (Ji –Jj) is the driving potential and (Ai –Fij)-1 is a 
space or geometrical resistance combining equation (23) and (24) 
 ֓ Ebi – Ji     = N  (J1- Jj) 
                     (1/ Ƹi ) / Ƹi Ai Ϩ    (Ai Fij)-1 
 j =1 
The two surface enclosure 

a12 J1 J2 Eb1 J1 J2 Eb2 

       1 1- Ƹi 1                     1- Ƹ2  
                        A F12                                                          Ƹ1 A1                 A1 F12          Ƹ2 A2 

 



49 
Prepared by Prof. WAHEED, Mufutau Adekojo 

 
(a) Element representing space resistance in radiation- network method 

(b) Element representing surface resistance in radiation- network method 

(c) Radiation network for two surfaces which see each other and nothing else. 

q    Eb J 
→ 
 1- Ƹ 
 ƸA 
 
The two network elements shown in figures (b) and (b) above represent the essentials of the 
radiation- network method. To construct a network for a particular radiation heat-transfer 
problem we need only connect a surface resistance (1- Ƹ)/ ƸA to each surface and a space 
resistance 1/ Ai Fij between the radiosity potentials. For example, two surfaces which 
exchange heat with each other and nothing else would be represented by the network shown 
in figure (c). In this case the net heat transfer would be the overall potential difference 
dividing by the sum of the resistances: 
 
 qnet =    Eb1 – Eb2 
 (1-Ƹ1) / Ƹ2 A1 + 1/A1F12 + (1-Ƹ2)/ Ƹ2 A2 

 

 qnet =   Ϭ (T1
4 – T1

4) 

 (1-Ƹ1) / Ƹ1 A1 + 1/A1F12 + (1-Ƹ2)/ Ƹ2 A2 

A three- body problem is shown in the figure below. 

 1 

         Eb1 J1     A1F12 J2 Eb2 
 1- Ƹ1          1- Ƹ2 
 Ƹ1A1 1 Ƹ2A2  
 A1F12 1  
                                                          A1F12 

 J3 

    1- Ƹ3 
                                                     Ƹ3A3 

 

 Eb3 Figure (e) 

In this case each of the bodies exchanges heat with other two. The heat exchange between 
body 1 and 2 would be 
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 a12 =  J1 – J2 

 1/ A1 F12 

And that between body 1 and 3 

a13 =  J2 – J3 

          1/ A1 F13 

To determine the heat flows in a problem of this type, the values of radiosities must be 
calculated. This may be accomplished by performing standard methods of analysis used in 
the circuit theory. The most convenient method is an application of Kirchhoff’s current law to 
the circuit, which states that the sum of the current entering a node is zero. The following 
example illustrates the use of the method for the three-body problem. 

Example: 

Two parallel plates 0.5 by 1.0m are spaced 0.5m apart. One plate is maintained at 10000c and 
the other at 5000c. The emissivities of the plates are located in a very large room, the walls of 
which are maintained at 270c. The plates exchange heat with each other and with the room, 
but only the plate surfaces facing each other are to be considered in this analysis. Find the net 
transfer to each plate and to the room. 

Solution 

  1 

Eb1= ɚT1
4          J1       J2 Eb2 == ɚT2

4 
 8.0 7.02 2.0 
    
 2.8  2.8 
                                                                  

  

    Eb3== ɚT3
4 J3 

                                                           

Solution 

This is a three-body problem, the two plates and the room, so the radiation network is shown 
figure (c) above. From the data of the problem. 

T1= 10000c = 1273 k  A1 = A2 = 0.5m2 

T2= 5000c = 773 k  Ƹ1 = 0.2 

T3= 270c = 300k  Ƹ2 = 0.5 
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Because the area of the room A3 is very large, the resistance (1-Ƹ3) / Ƹ3 A3 may be taken as 
zero and we obtain Eb3 == J3. The shape factor was given example 5 as 

 F12= 0.285 = F21 

F13= 1 - F12= 0.715 

F23= 1 – F21= 0.715 

The resistances in the network are calculated as 

 1- Ƹ1 = 1 – 0.2  = 8.0 

Ƹ1 A1               0.2 x 0.5 

 

1- Ƹ2 = 1 – 0.5  = 2.0 

Ƹ2 A2               0.5 x 0.5 

 

   1 =     1  = 7.018 

           A1 F12               0.5 x 0.285 

 

   1 =     1  = 2.797 

           A1 F13              0.5 x 0.715 

 

   1 =     1  = 2.797 

           A2 F23              0.5 x 0.715 

Taking the resistance (1- Ƹ3) / Ƹ3 A3 as zero, we have the network as shown. To calculate the 
heat flows at each surface we must determine the radiosities J1 and J2. The network is solved 
by setting the sum of the heat currents entering nodes J1 and J2 to zero:   

Node J1: Ebi – J1      +  J2- J1            + Eb3 – J1  = 0 (a) 
   8.0  7.017  2.797  

 
Node J2: J1- J2      +    Eb3 – J2    +       Eb2 – J2       = 0  (b) 
   7.018  2.797      2.0          

Now   Eb1 = Ϭ T1
4           = 148.87 kw/m2 
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  Eb2 = Ϭ T2
4           = 20.241 kw/m2 

 Eb3 = Ϭ T3
4           = 0.4592 kw/m2 

Inserting the values of Eb1, Eb2 and Eb3 into eqns. (a) and (b), we have two equations and two 
unknowns J1and J2 which may be solved simultaneously to give 

 J1      = 33.469 kw/m2 

 J2     = 15.054 kw/m2 

The total heat loss by plate 1 is 

  q1  =  Eb1 – J1  = 148.87 – 33.469 

 (1- Ƹ1) / Ƹ1 A1  8.0 

 

 q1  = 14.425 kw 

And the total heat lost by plate 2 is 

  q2  =  Eb2 – J2  = 20.241 – 15.054 

                                     (1- Ƹ2) / Ƹ2 A2                              2.0 

 

 q2  = 2.594 kw 

The total heat received by the room is 

 q2  =    J1- J3  =         J2- J3 

                                  1- A1 F13                       1- A2 F23 

 

 q2  = 33.469 – 0.4592  + 15.054 – 0.4592 

 2.797 2.797 

   = 17.020 kw 

From an overall- balance stand point we must have  

 z2 = a1+ a2   because the net energy lost by both plates must be absorbed by the room 

Radiation shields  Gas radiation 

 Radiation network for an absorbing and transmitting medium 
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The reradiating surface Radiation exchange with specular surfaces 

Radiating exchange with transmitting, reflecting, and 
absorbing media 

Multimode Heat Transfer Solar radiation  

 Radiation properties of the environment 

Heat Exchanger 

The application of the principles of heat transfer to the design of equipment to accomplish a 
certain engineering objective is of extreme importance because it leads to product 
development for economic gain. A heat exchanger is a device used for the process of heat 
exchange between two fluids that are at different temperatures and separated by a solid wall, 
which occurs in many engineering applications. 

Heat exchangers find applications in space heating and air conditioning, power production, 
waste heat recovery, and chemical processing, aeronautical applications, etc. Economics 
plays a key role in the design and selection of heat- exchange equipment. The weight and site 
are important cost factors in the overall applications of heat exchanger and these may be 
considered as economic variables. We shall concern ourselves with 

- Method of predicting heat- exchanger performance 
- Method used to estimate the heat- exchange site and type 

necessary to accomplish a particular task. 

Heat Exchanger Types 

Heat exchangers are typically classified according to flow arrangement and type of 
construction. 

(i) Concentric tube exchanger: In a concentric tube heat 
exchanger, the hot and cold fluids move in either the same or opposite direction 
called parallel flow or counter flow arrangement respectively. 
 
 

    

 

 

 (a) (b) 

Concentric tube heat exchangers (a) parallel flow (b) counter flow. 

(ii) Cross- flow heat exchangers, i.e. fluids more perpendicular to each other 
(a) Finned with both fluids unmixed 
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(b) Unfinned with one fluid mixed and the other unmixed 
(iii)Shell- and- tube heat exchanger 

Specific forms differ according to the number of shell-and-tube passes. The 
simplest form involves single tube and shell passes. Baffles are usually installed to 
increase the convection coefficient of the shell-side fluid by inducing turbulence 
and a cross flow velocity component. 

(iv) Compact heat exchangers – These devices have dense arrays of finned tubes or plates 
and are typically used when at least one of the fluids is a gas, and is hence 
characterized by a small convection coefficient. 

 

Heat Exchanges Analysis:  Use of the Log Mean  

Temperature Difference. 

To design or to predict the performance of a heat exchanger it is essential to relate the 

total heat transfer rate to the quantities such as the inlet and outlet fluid temperatures, 

the overall heat transfer coefficient, and the total surface area for heat transfer.  This is 

done by applying overall energy balances to the hot and cold fluids.  This leads to: 

 q  =  Mh CPh (ThiL – Thio) 

 

 q  = Mc CPic (Tcio - TciL) 
 

Where i is the fluid inlet conditions 

o is the fluid outlet = 

h refers to hot and c to cold fluid. M is the mass flow rate, Cp is the fluid specific heat 

capacity, T is the fluid temperature at any particular cross-section of the channel. 

The temperature difference between the hot and cold fluids is determined from the  

T = Th – Tc 

However,  T varies with position in the heat exchange, so it is necessary to work with 

a rate equation of the form. 

q =  

where  is referred to as the log mean temperature difference, and U as the overall 

heat transfer coefficient. 

It can be shown that the log means temperature difference is determined from the 

expression: 
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Note that for parallel flow exchanger 

 

 
 

For counter flow exchanger: 

 

 
 

The above derivation for LMT  involves two important assumptions: (i) the fluid 

specific heats do not vary with temperature, and (2) the convection heat-transfer co-

efficient are constant throughout the local exchanger.  The second assumption is 

usually the more serious one because of entrance effects.  Fluid viscosity and thermal-

conductivity changes, etc. 

If a heat exchanger other than the double-pipe type is used, the heat transfer is 

calculated by using a correction factor applied to the LMT  for a counter flow double-

pipe arrangement with the same hot and cold fluid temperatures.  The heat-transfer 

equation then takes the form. 

 q = UAF  

Values of the correction factor F are posted in different charts for several different 

types of habit exchangers.  When change in phase as in condensation or boiling 

(evaporation, the fluid normally remains at essentially constant temperature and the 

relations are simplified. For this condition 

F =   1.0 for boiling or condensation. 

 

Example 1 
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Water at the rate of 68kg/min is heated from 35 to 750C by an oil having a specific 

heat of 1.9KJ/kg.0C.  The fluids are used in a counter flow double-pipe heat 

exchanger, and the oil enters the exchanger at 1100C and leaves at 750C.  The overall 

heat-transfer coefficient is 320W/m2. Calculate the heat-exchange area. 

Solution: 

The total heat transfer is determined from the energy absorbed by the water: 

 q = Mw Cp,w Tw = 68 X 4180 X (75 - 35) 

  = 11.37 MJ/Min 

  = 189.5KW 

Since all the fluid temperatures are known, the LMT  can be calculated by using the 

expression. 

    

 

 
 

From the expression 

 q = UA  

 A =  

  

 A = 15.82m2 

 

Examples 2 

Instead of the double-pipe to use a shell-and tube exchanger with the water making 

one shell pass and the oil making two tube passes.  Calculate the area required for this 

exchanger, assuming that the overall heat transfer co-efficient remains at 

320W/M2,0C. 

 

Solution: 



57 
Prepared by Prof. WAHEED, Mufutau Adekojo 

To save this problem, we determine a correction factor from the curves on correction 

factor plot for exchanger with one shell pass and two, four, or any multiple of tube 

passes”. 

To be used with the LM calculated on the basis of a counter flow exchange.  The 

parameters according to the nomenclature of the figure are: 

Ti = 350C,  T2  =  750C, t1 = 1100C,  t2  =  750C 

 

P =  

 

R =  

 

So the correction factor is 

 

F = 0.81 

 

And the heat transfer is  

q = UAF  

 

so that A =  

 A = 19.53M2 

Examples 3 

Water at the rate of 3.783kg/s is heated from 37.78 to 54.440C in a shell and tube heat 

exchanges.  On the shell side one pass is used with water as the heating fluid, 

1.892kg/s, entering the exchanger at 93.330C.  The overall heat-transfer coefficient is 

14.19W/M2 0C, and the average water velocity in the 1.905cm diameter tube is 0.366 

M/S.  Because of space limitations the tube length must not be longer than 2.438m. 

Calculate the number of tube passes, the number of tubes per pass, and the length of 

the tubes, consistent with this restriction.  The specific heat capacity of water is 

4.1820KJ/kg 0C. 



58 
Prepared by Prof. WAHEED, Mufutau Adekojo 

 

Solution: 

We first assume one tube pass and check to see if it satisfies the conditions of this 

problem.  The exit temperature of the hot water is calculated from 

 

q  =  Mc CPc  = Mh CPh      ....................(a) 

 

   =  

   = 33.330C 

So Th, exit  = 93.33  - 33.33 

  = 600C 

The total required heat transfer is obtained from equ (a) for the cold fluid 

 

  q = 3.783 X 4182 X (54.44 - 37.78) 

   = 263.6KW 

 

For a counter flow exchange, with the required temperature 

 

LMT   =         =  

 

             = 29.780C 

   q               =           UA  

   A              =   

   A              =       6.238M2     (b) 

Using the average water velocity in the tubes and the flow rate, we calculate the tube 

flow area with  

Mc = PAV 

A =       (c) 

 = 0.01034M2 
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This area is the product of the number of tubes and the flow area per tube: 

0.01034 =  

 n =  

 n = 36.3 

or n = 36 tubes.  The surface area per tube per meter of length is  

 
We recall that the total surface area required for a one-tube pass exchanger was 

calculated in equation (b) as 6.238m2.  We may thus compute the length of tube for 

this type of exchange firm 

n dL  = 6.238 

L  =  

L  = 2.898m 

 

This length is greater than the allowable 2.438m, so we must use more than one tube 

pass.  When we increase the number of passes, we correspondingly increase the total 

surface are required because of the reduction in LMT  caused by the correction factor 

F.  We next try two tube passes.  From the appropriate chart fig. 10 – 8, F= 0.88, and 

thus 

 

Atotal   =   

 

  = 7.089m2 

The number of tubes per pass is still 36 because of the velocity requirement.  For the 

two-tube-pass exchanger the total surface area is now related to the length by 

Atotal   = 2n dL 

 

So that L =  

 L = 1.646m 
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This length is within the 2.438rm requirement, so the final design choice is  

 Number of tubes per pass = 36 

 Number of passes = 2 

 Length of tube per pass = 1.646m 

 

 

Example 4 

A cross flow heat exchanger with one fluid mixed and one unmixed is used to heat an 

oil in the tubes (cp = 1.9 KJ/kg.0C) from 150C to 850C.  Blowing across the outside of 

the tubes is steam which enters at 1300C and leaves at 1100C with a mass-flow of 

5.2kg/s.  The overall heat-transfer coefficient is 275 W/M2 0C and cp for steam is 

1.86KJ/kg 0C. Calculate the surface area of the heat exchanger. 

 

Solution: 

The total heat transfer may be obtained from an energy balance on the steam. 

 

 q =     m,cp,s  = 5.2 X 1.86 X (130 – 110) 

  = 193KW 

 

We can solve for the area from equation 

 q = UAF  

the values of  is calculated as if the exchanger were counter flow double pipe 

thus: 

 
   =  66.90C 

Now, from figure 10-11, t1 and t2 will represent the unmixed fluid (the oil) and T1 and 

T2 will represent the mixed fluid (the steam) so that 

T1 = 130, T2   =  110,   t1= 15 and t2  = 850C and we can calculate 

R =  
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Consulting figure 10 -11, we find  

F = 0.97 

So the area is calculated from  

 A =  

 A = 10.82m2  

q = 0.1 x 2131 x (100 - 60) 

 = 8524W 

For water on that temperature 

q = Mc Cp,c (Tc,o – Tc,i) 

Tc,o =  

Tc,o = 40.20C 

Accordingly, use of Tc = 350C to evaluate the water properties was a good choice.  

The required heat exchanger length may now be obtained from equation 

q =  

where A = L 

     

  =  

   = 43.20C 

 

Example 5 

A counter flow, concentric tube heat exchanger is used to cool the lubricating oil for a 

large industrial gas turbine engine.  The flow rate of cooling water through the inner 

tube ( =25mm) is 0.2kg/s, while the flow rate of oil through the outer annulus 

( =45mm) is 0.1kg/s.  The oil and water enter at temperatures of 100 and 300C 

respectively.  How long must the tube be made if the outlet temperature of the oil is to 

be 600C ? 

Solution 
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Properties:  From the table on the thermo physical properties to saturated fluids 

For unused engine oil 

At  Th = 800C =  353 K 

 Cp = 2131 J/kg.k, ai = 3.25 x 10-2 N.S/m2 

 K = 0.138 W/M.k 

For water 

Tc = 350C, cp = 4178 J/kg, k, ai = 725 x 10-6 N.S/m2 

K = 0.625 W/m.k. pr = 4.85 

Analysis:  The required heat transfer rate may be obtained from the overall energy 

balance for the hot fluid 

q = Mh Cp,h (Thi – Th,o) 

the overall heat transfer coefficient is 

 U =  

For water flow through the tube 

ReD =   =  

ReD =  14,050 

 

Accordingly, the flow is turbulent and the convection coefficient may be computed 

from  

NUD = 0.023 ReD 4/5   Pr 0.4 

 = 0.023 x (14,050)4/5  4.850.4 

 = 90 

Hence 

hi = NUD    =  

 = 2250 

For the flow of oil through the annulus, the hydraulic diameter is, from equ 
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  =  

  

And the reyholds number is 

ReD =  

  

ReD =  

 = 56.0 

The annuler flow is therefore laminar. Assuming uniform temperature along the inner 

surface of the annulus and a perfectly insulated outer surface, the convection 

coefficient at the inner surface may be obtained from table of Nasselt number for fully 

developed laminar flow  

With    =   0.56, linear interpolation provides 

   

And  

 = 38.4w/m2.k 

The overall convection coefficient is then 

U =  

 = 37.8w/m2.k 

And thus from the rate equation, it follows that 

L =  

 = 66.5m 

 

Comments: 

1. The hot side convection coefficient controls the rate of heat transfer 

between the two fluids, and the low value of is responsible for the large 

value of L. A spiral tube arrangement would be needed. 
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2. Because  the tube wall temperature will follow closely that of 

the coolant water.  Accordingly, the assumption of uniform wall 

temperature used to obtain  is reasonable. 

 

 

 

 

Nusselt number for fully developed Laminar flow in a circular tube annulus with one 

surface insulated and the other at constant temperature. 

 

 /   NNi NVo
 

 0 - 3.66 

 0.05 17.46 4.06 

 0.10 11.56 4.11 

 0.25 7.37 4.23 

 0.50 5.74 4.43 

 1.00 4.86 4.86 

 
Firm handbook of Hea Transfer, Chapter 7 W.M. kays and H.C. per kins, Eds. W.M. Kolisenoro and 

J.P. Hartwest  


