
International Journal of Computer Applications (0975 – 8887)

Volume 17– No.7, March 2011

6

A Reliable Protection Architecture for Mobile Agents
in Open Network Systems

 Ibharalu Friday Thomas Sofoluwe Adetokunbo Babatunde Akinwale Adio Taofiki
Department of Computer Science Department of Computer Science Department of Computer Science
 University of Agriculture University of Lagos University of Agriculture
 Abeokuta, Nigeria Lagos, Nigeria Abeokuta, Nigeria

ABSTRACT
A mobile-agent system is one where user programs (the

agent) may voluntarily and autonomously migrate from one

computer (the host) to another (the mobile agent server). A

large deployment of mobile agent systems is not possible

without satisfying security architecture. The major obstacle

facing wide deployment of mobile agents is the attack of a

visiting code by a malicious host. The fact that host

computers have complete control over all the programs of a

visiting agent makes it very hard to protect agents from un-

trusted hosts. This has resulted to restricted deployment of

mobile agents to known hosts in closed networks where the

security of the agents is guaranteed. However, this

restriction negates the original major concept of autonomy

on which mobile agent technology is established. In this

paper we propose dynamic protection architecture for

mobile agents systems, using Travel Diary Protection

Scheme and Platform Registry. The scheme protects and

allows mobile agents to roam freely in open networks

environment without being compromised in a malicious

hosts.

General Terms
Security of Mobile Agent on host platform

Keywords
Mobile Agents, Security, Travel Diary, Platform Registry

1. INTRODUCTION
Mobile agent can be simply thought as an entity which can

run in dynamic environment with autonomous ability and

mobility. This technology has great potential in e-

Commerce, network management, distributed computing,

data mining, intrusion detection system, etc. But security is

the main problem that prevents mobile agent from being

widely deployed. Generally, security problems lie in two

aspects: host security and agent security. The first problem

has many common characteristics of traditional computer

security; thus corresponding traditional methods have been

used to solve it with satisfactory results. But the latter is

still a challenging problem. Our study focuses on the

security of mobile agent on a host platform. Furthermore,

an agent can embark on two types of journey: a journey

with a diary containing pre-defined itinerary and a journey

where the mobile agent has no fore knowledge of the host

to visit. This is called a free-roaming mobile agent which is

more difficult to protect. Methods used to protect an agent

(its data and state) count on the type of the agents’ journey.

Free-roaming agent without traveling dairy specifying

where to visit may face more complex attacks such as

colluded truncation attack, replay attacks or many other

forms of host attacks on a visiting agent.

This paper focuses on securing free-roaming agents in open

network environments and presents a novel security

protocol which has fine function in preventing attacks.

2. LITERATURE REVIEW
Since the beginning of mobile agent research, many

security issues have been identified. In [15], issues were

classified according to the source of the attack and the

entity being attacked: agents against agents, agents against

hosts, and hosts against agents.

In the first category - agents against agents - we can find

attacks in which agents modify or access another agent’s

data, disguise their identity in order to falsify a transaction,

or repeatedly send messages to another agent in order to

launch a denial of service attack, among others. The second

category - agents against host platforms - includes threats

in which agents perform some malicious action on a

resource they can access (e.g. deleting a file), consume an

excessive amount of system resources, gain access to a

service to which they are not entitled, and so on.

With regard to these two first categories, in which the

attacker is an agent, sound solutions have already been

proposed. Among the solutions that provide an acceptable

level of protection, the most efficient one is called

Software-Based Fault Isolation [3]. This mechanism, also

known as sandboxing is based on limiting program

accessibility to a closed domain, in such a way that the

program address space and available resources are confined

within this domain.

Other mechanisms proposed for these kinds of attacks

include: using safe code interpretation [4], where the set of

available instructions prevents the agent from attacking the

host: signing the code in order to authenticate the agent

owner, together with some mechanism to determine the

level of trust of this owner [10], sending logical

demonstrations along with the code, in order to proof that

the execution of that code is secure [11].

Regarding the second category - others against host

platforms - the source of the attack can be any external

entity that is not part of the agent platform. This external

entity can perform attacks against the platform resources

(files, communication ports, etc.) or against the host’s

communications with the outside. In these cases, security

greatly depends on the mechanisms provided by the

operating system. Additionally, a secure communication

channel, established using mechanisms such as Transport

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.7, March 2011

7

Layer Security [12], can be used to secure the

communication between the host and other parties

Regarding the third category, that is host against agents - is

the most difficult to prevent. It is obvious that if a host is to

execute an agent, it must have complete access to the agent

code, state and data. There is nothing to prevent the host

from analyzing the agent code, from corrupting its state or

data, from manipulating its execution environment, or from

executing it multiple times in order to, for example,

generate multiple purchases in a shopping scenario. If some

agent data is to be kept secret from the host, it must be

stored in a way that even the agent itself cannot directly

access encrypted with the key of a different host platform,

for instance.

Several mechanisms have been proposed to address the

malicious host server problem. Some of the better known

solutions to the malicious host problem are impractical.

They have been designed for particular scenarios that are

actually rarely found in real-life applications. Some of the

better known ones are:

 Execution tracing

 Obfuscation

 Computing with encrypted functions

 Tamper-proof devices

2.1 Execution Tracing
Execution tracing [13] is a technique that allows

unauthorized modifications of an agent to be detected upon

completion of the agent execution. The protocol proposed

in [14] is based on recording the agent’s behavior on each

platform in order to build a trace of its execution. The trace

is composed of a sequence of identifiers corresponding to

the operations executed by the agent. Platforms must

produce and maintain traces of all executed agents, so that

agent owners can request these traces after the agent has

terminated its execution, and verify that the agent code or

state has not been maliciously modified. This approach has

several drawbacks, such as the size and the number of logs

to be kept by platforms, or the possible lack of connection

between the owner and the platforms once the agent has

returned to the home platform. Besides, the verification

mechanism is too expensive to be applied systematically,

and can only be used when the owner has a suspicion that

the agent execution has been corrupted.

2.2 Obfuscation
Code obfuscation [13] aims at generating executable agents

which cannot be attacked by reading or manipulating their

code. This technique is based on transforming the agent

code in such a way that it is functionally identical to the

original one, but it is impossible to understand it. The

approach also establishes a time interval during which the

agent and its sensitive data are valid. After this time

elapses, any attempt to attack the agent becomes worthless.

 The major drawback of these techniques is the difficulty in

establishing the time required by an attacker to understand

an obfuscated code. Similarly, no mechanism is currently

known for quantifying the amount of time required by an

agent to accomplish its task, especially in heterogeneous

environments. As a result, restricting the lifetime of a

mobile agent is not feasible in practice.

2.3 Computing with Encrypted Functions
Computing with encrypted functions is a technique

proposed by Sander and Tschudin [12] to achieve code

privacy and code integrity. Their technique is based on

creating encrypted programs that can be executed without

decrypting them. Supposing that a mobile agent has to

execute a certain function f then f is encrypted to obtain E

(f) and a program is created that implements E (f).

Platforms execute E (f) on a clear text input value x,

without knowing what function they actually computed.

The execution yields E (f(x)), and this value can only be

decrypted by the agent owner to obtain the desired result

f(x). The main problem of this technique is that the authors

have only found encryption schemes for polynomials, using

homomorphism encryption and function composition

techniques. Thus, their proposal is not suitable for general

programming.

2.4 Tamper-Proof Devices
The use of tamper-proof devices is based on performing

part or the entire agent execution on a physically sealed

environment, which can be trusted to execute the agent

correctly. Tamper-proof devices can be provided by a

trusted third party and, if necessary, they can be inspected

periodically to verify that their security has not been

compromised. Tamper - proof devices can be used to carry

out cryptographic operations with a private key that must

be kept secret from the remote host. They can also have

their own private key, for example, to sign partial results

generated by the agent. This approach suffers from two

areas: the cost of tamper-proof device on every platform.

Secondly, the approach is only suitable for closed

environments, such as corporate networks such as within in

a group of banks in a geographic political area. As a result,

the technique implies a loss of agent autonomy. Hence this

paper focuses on realistic protocol that solves the malicious

host problem.

3. OVERVIEW OF MOBILE AGENT

ARCHITECTURE
Figure 1 to 5 shows the structure of mobile agent systems.

Mobile agents travel around in a network environment

visiting computers, hopping from one host to others. The

execution of the program code and the dispatching agents

to different computers is handled by mobile agent servers.

Each agent has its own thread, which is executed by the

host server. Any communication between different servers

or agents is done by messages. So messages are quite

universal in the agent environment.

3.1 Mobile Agents Interactions an a Server
Figure 1 shows the relationships between various agents on

a given server as they communicate using messages to

accomplish the execution tasks. The host plays a crucial

row of providing the resources needed by visiting agents.

Messages

Host

Figure 1: Agents on Servers

Agents Agents

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.7, March 2011

8

3.2 Mobile Agent Server Architecture
Figure 2 shows the structure of a mobile agent server. The

server coordinates the activities of the visiting quest agents.

Messages passing form an important component in the

mobile agent communication.

Figure 2: Mobile Agent Server Architecture

3.3 Transfer of Mobile Agents between

Servers
When an agent finishes its task on a host, it either migrates

to another host platform or returns to its home host. Figure

3 shows how agents are dispatched from one host to

another using object serialization/de-serialization. Object

serialization is the process of converting a data structure or

object into a format that can be stored (for example, in a

file or memory buffer, or transmitted across a network

connection link) and "resurrected" later in the same or

another computer environment [14]. When the resulting

series of bits is reread according to the serialization format,

it can be used to create a semantically identical clone of the

original object. The process of restoring the object is

known as de-serialization.

3.4 Message Exchange between Agents on the

 Same Server
The host platform facilitates exchange of messages

between two or more agents on the host and between

different hosts. Figure 4 shows the roles of the server in

intra/inter server agents’ communication while figure 5

illustrates message exchange between agents on different

servers.

Figure 3: Transfer of mobile agents between servers

Packs Agent into a

message

(serialized object)

 Agent Server

 Unpacks message
into Agent
(de-serialized
object)

Agent Server

Mobile Agent

 Inbox

 Incoming Message Handler

 Mobile Agent

 Outbox

 Outgoing Message Handler

Mobile Agent Server

Return Home To
Another Host

From
Home

From Another Host

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.7, March 2011

9

Figure 4: Message exchange between agents on the same server

Figure 5: Message exchange between agents on different servers

3.5 Agent’s Security Challenge
The mobile agent architecture given in figures 1 to 5 shows

that agent is exposed to a lot of abuses and security

chalenges while roaming the network to perform its duties.

A lot of research has been dedicated to address the security

problems in mobile agent systems. This research differs in

its aim, emphasis, base, and technique. Some works are

towards building the foundations for the security of a

mobile agent system; some propose security mechanisms

following different approaches; some focus on introducing

security mechanisms into the architectures of mobile code

systems; and others implement real applications with

security features.

However, there has been no successfull research dedicated

to provide an intuitive protection framework for protecting

mobile agents on the host server they execute on. This is

the problem that this work addressed.

4. THE APPROACH
4.1 Agent’s Itinerary
Several protocols have been proposed for the protection of

the agent’s itinerary. These protocols are usually based on

storing the itinerary information in a separate data

structure, and then use cryptographic mechanism to protect

this data structure. When the itinerary information is stored

and maintained outside the main agent code, the itinerary is

said to be explicit, and its protection is significantly

simplified.

The itinerary protection protocols presented to date do not

support the protection of free-roaming agents. Agents are

thus forced to travel static itineraries, that is, itineraries in

which all host are known in advance. However, most useful

and practical mobile agent-based applications should be

based on using dynamic itineraries for free roaming agents,

in which some host platforms are discovered at runtime.

4.2 Securing Dynamic Itineraries
In order to support free-roaming agents, we present a

protection scheme based on introducing trusted locations

into the agent’s route. Introducing some trusted hosts into

the itinerary makes it possible for our architecture to secure

the information associated with dynamically located host.

4.2.1 Platform Registries
This paper proposes platform registries, which are digital

security infrastructures, maintained by trusted certificate

authorities, such as Baltimore Cyber Trust, Entrust Secure

Mobile

Agent

Server

Mobile

Agent

Server

Mobile agent message

Mobile agent

Message

Mobile Agent

Mobile Agent

Mobile Agent

Server

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.7, March 2011

10

Server Certification Authority, Equifax Secured Certificate

Authority, RSA Data Security Inc, e.t.c., for the registration

and insurance of trusted digital certificates to public mobile

agents’ host platforms

4.2.1.1 Assumptions Made with Regard to

Trusted Platforms
With our introduction of trusted platform registries into

agent’s itinerary, we believe that the agent’s task will be

executed on that platform as expected. The architecture

presented in this proposal assumes that a trusted platform

will execute the agent’s task honestly. Moreover, it is

assumed that the trusted agent platforms are protected with

appropriate mechanisms so as to prevent attacks from third

parties that might alter the agent execution. In this case,

security greatly depends on the mechanisms provided by

the operating system and the good design of associated

protocols. The proposed protocol also assumes the

existence of a security infrastructure that allows agent

developers and users to determine whether a platform is

trustworthy or not. An example of such infrastructure can

be found in [14]. In this work, the authors describe a

security framework for a mobile agent system which

incorporates a simple trust model. Such model is based on

establishing trust relationships in a manner similar to that

used in public key infrastructures to handle distributed

authentication.

The identification of trustworthy platforms can also be

grounded on simpler mechanisms, such as relying on real-

world trust relationships. For example, the platform

associated with a bank where the user has an account, or

the platform from which the agent was first launched, can

be safely introduced into the agent’s itinerary as trusted

platforms.

4.3 The Protection Architecture
This protection architecture aimed at protecting flexible

dynamic mobile agent itineraries. The architecture pursues

three main objectives:

Integrity: Platforms must not be able to modify the agent’s

itinerary undetectably.

Confidentiality: Platforms must not be able to access

itinerary information of other platforms.

Authenticity: Platforms must be able to verify the identity

of the agent owner.

4.3.1 The Idea
The general idea behind this protection architecture is to

construct a chain of digital envelopes, each of which

containing two elements: the data, and the encrypted key

that allows decrypting the following envelope. The scheme

is illustrated in figure 6 below.

Agent’s Agent

Home Home

Figure 6: Chain of digital envelops for static itinerary

The envelopes shown in this figure 6 represent the entries

of the protected itinerary. Every envelope, (ej) is encrypted

using a random symmetric key (kj), and this symmetric key

is in turn encrypted using the public key, (pj) of the host j,

entitled to open the envelope. Thus, each envelope can only

be decrypted by the intended host. Additionally, the

envelopes can only be opened in the correct order, since the

symmetric key used to decrypt an envelope is protected

inside the previous envelope.

4.4 Support for Dynamic Itinerary
The problem of protecting dynamic itineraries in which not

all public keys are known in advance makes it impossible

to build a chain of digital envelopes as the one previously

described in sub-section 4.3.1 above. More specifically, the

hosts that will be visited to execute an itinerary are

dynamically discovered by the agent at runtime. Therefore,

the public keys of such platforms are not available when

the itinerary is created. In order to solve this problem, we

developed a novel protection scheme that is based on

protecting the agent itinerary, on the dynamically

discovered platforms, using the public keys that will be

obtained from their corresponding platform registries. This

scheme involves the use of platform registries discussed

above by changing the chain of digital envelopes, as shown

in figure 7.

 It should be noted that, when an agent asks a dynamically

located platform for its platform registry identifier, for the

purpose of obtaining its public key, and this host falsely

gives a wrong id, then it is either the registry will be unable

to supply its id or the host itself will be unable to decrypt

the message meant for it. In either of the two cases, the

agent is protected from this malicious host.

ej
 d1

P2(k2)

en

 dn pn(kn)

l

d2

p3(k3)

e2 e1

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.7, March 2011

11

Figure 7: Chain of digital envelopes with Platform Registry to support dynamic itineraries.

4.5 Securing Itinerary
To secure an itinerary, a random symmetric

key 1 2, , ..., nk k k
 is created for every itinerary host. Next,

each possible migration from a host i to j denoted by
i jt

 is

constructed as

, ((, ,))i j j j i j jt a p s id k a
 (1)

Where ip
 denotes an asymmetric encryption function

using the public key of platform i

ja
 denotes the address of host j

is
 denotes a digital signature function using the private

key of host i

 From the equation, the transition from host i to host j

contains the random symmetric key
jk
 associated with

host j. This key will be used to encrypt the envelope of the

protected itinerary when going to host j. In order to ensure

that only platform j has access to
jk
 it is encrypted using

the public key of host j. Finally,
i jt

 include a unique agent

identifier id that is used to prevent replay attacks. It

should also be noted that both id and
jk
 are signed by

the agent’s owner so that host j will be able to verify the

agent’s identity and integrity of the information it carries.

The equation in 1 used to build agent transitions
i jt

from

host i to j is useful only when the host j is not dynamically

located at runtime, that is
ja
 and the public key of host j is

ej ej+4

 ex

 Platform Registry

host1, key1

host2, key2

...

 hostn, keyn

pj+1(kj+1)

 ej+3

 dj

platformReg

(aj ,regIdj)

 dj+4

 kn

p...k(...)

\ dj+3

 k2

pj+4(kj+4

)

Pj+3k(j+3)

 dj+2

 e2

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.7, March 2011

12

known at the agent home before the start of migration. If

host j is located at runtime, then

,?i j jt a

 (2)

Thus
((, ,))j i j jp s id k a

 is replaced with ?, an unknown

value. This is due to the fact that
ja
 is not known at the

time of creating the itinerary, and the public key needed to

compute
(, ,)i j j js id k a

 is not available. In this case,

when the host is located at runtime, its address
ja
 and its

corresponding agent Platform Registry Identifier

()jregId
 will be obtained from this host for the purpose

of getting its corresponding public key needed to compute

jk

The transition from the current host i to the dynamically

located host j is now computed as

(,)j j jp platformReg a regId

, ((, ,))i j j j i j jt a p s id k a

 (3)

This equation 3 is equivalent to equation 1 above. The

major difference is that
jk
 is replaced with the random

symmetric key for the new host,
ja
, generated from the

public platform registry access function that takes an agent

host address and its corresponding platform registry

identifier and return the host public key, if the host is

registered with the registry and null otherwise. It is not safe

to obtain a host’s public key,
jp
 directly from the host.

The symmetric keys 1 2, , ..., nk k k
, which are used to

encrypt the entries of the protected itinerary, are digitally

signed by the agent owner. It ensures that attackers can

neither generate their own itinerary entries nor modify

existing ones.

Also, the unique agent identifier id prevents the reuse of

entries previously generated by the same owner. Thus the

integrity of the protected itinerary is guaranteed.

Additionally, every transition to a host j includes address

ja
 of the host. Hence the hosts can verify that they were

indeed part of the itinerary.

4.6 Simulation
In order to prove the viability of the proposed architecture,

we implemented and performed two multi-phased

experiments. The first part of the experiments was based on

the proposed security architecture, simulating a simple

mobile agent-based application on a hotel search and

reservation system, using a local area network (LAN) of

thirteen computers, with ten serving as host servers and the

other three serving as platform registries. Each of the ten

computers configured .with appropriate programs to make

them malicious and very hostile to visiting mobile agents,

was setup to act as mobile agent server to their respective

hotels.

The system allows an individual to find the cheapest hotel

in a given destination, taking into account the user

preferences with regard to room facilities and guest

services. The application allows the user to define search

criteria. After defining the search criteria, a mobile agent is

started that, first of all, queries a remote hotel search engine

to obtain a list of the five cheapest hotels in the destination.

The agent then visits each one of these hotels and checks

their room availability for the desired rates, their room

facilities, services, etc. In addition, the agent can also

negotiate a special discount for long stays. Our dispatched

agent randomly visited eight of the ten servers and

eventually returned home with execution log on each server

visited.

The second part of the experiment was identical to the first

except that the dispatched agent employed obfuscation

methods for its itinerary without the proposed new

protection scheme.

Table 1: Analysis of Mobile Agents with and without Platform Registry

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.7, March 2011

13

Figure 8: Agent on malicious hosts with and without security measures

4.7 Analysis of the Log Files
The agent code in our experiments was designed to return

its execution log on each server visited. This enabled us to

analyze its venerability to attacks by its hosts. The

execution log files at each server were encrypted using this

same proposed protocol with the public key of the agent

home platform. The analysis of the log files showed that no

successful attempts were made to read the agent’s itinerary

which included packets from the agent’s previously visited

servers and the packets for the next host to be visited from

the current server. The current host server could only open

the packet meant for it that was previously encrypted with

its own public key obtained from one of the platform

registries.

On the other hand, in our second experiment, where the

obfuscation methods were used without our proposed

protection architecture, the analysis of the returned log files

showed that four of the host servers visited were able to

access the agent’s data packets that were not meant for

these hosts. Table 1 illustrates mobile agents with and

without platform registry protection scheme. As shown in

table 1, our scheme made it difficult for the host to alter the

packet.

On time performance factor, the execution time of the

agents with our proposed scheme was compared to the

execution time of the agents in our second experiment, that

is, the roaming agents without our proposed protection

framework, to determine if the proposed protection

architecture increased the execution times considerably.

We found out that the execution time of the agents with our

protocol increased by approximately 40.6% of the

unprotected agent’s execution time as illustrated in figure

8. This increase is largely due to the time required to

execute complex cryptographic protection protocol at

platform registries and on each of the host platforms

visited. We also found out that the time increase is a linear

function of the number of hosts visited. The increase in

time would be negligible if the actual task to be performed

by an agent on each server is itself complex and time

consuming.

5. CONCLUSION
The paper proposes the use of a chain of digital envelopes

with platform registries to support dynamic agents’

itineraries in open network environment. The scheme is

capable of preventing a host server from gaining access to

the information carried by a mobile agent that is not meant

for it, that is, the current host. The proposed scheme

exhibited better performance when compared to the results

obtained from obfuscation methods in terms of data

integrity and security. However, the proposed scheme

consumes a little more time visiting platform registries and

executing complex cryptographic functions than the

obfuscation methods.

6. REFERENCES

[1] Wahbe R., S, Lucco, T.E. Anderson and Graham S.L.,

1993, Efficient Software Based Fault Isolation, In

Proceedings of the 14th ACM Symposium on

Operating Systems Principle, pp 203-216, ACM

[2] Jacob Y. Levy, John K. Ousterbhout and Brent B

Welch, 1997, The safe Tcl Security Model Technical

Report, Sun Microsystems

[3] Sreekanth V., S Ramchandram and A. Govardhan,

2010, Mobile Agent Security and Key Management

Technique, Journal of Computing, Vol. 2, Issue 9,

ISSN 2151-9617

[4] Neelesh Kumar Panthi and Chaudhari Neelesh Kumar

Panthi, 2010, Securing Mobile Agent using Dummy

and Monitoring Mobile Agent, International Journal of

Computer Science and Information Technologies, Vol

1 (4), pp 208-211

[5] Sarvarnl Islam Rizvi, Zinat Sultana, Bio Sun and Mid

Washiqul Islam, 2010, Security of Mobile Agent in

Ad Hoc Network using Threshold Cryptography,

World Academy of Science, Engineering and

Technology, Vol 30, pp 424-427

[6] Sreekanth V., Ranchandra S., and Gavardhan A.,

2008, A Novel Approach for Securing and Integrity of

Mobile Agents, ICCBN, IISC, Bangalore

[7] Tomas Sander and Christian F. Tschudin, 1998,

Protecting Mobile Agent against Malicious Hosts, In

Giovanni Vigna, Mobile Agent Security, pp. 44-60,

Springer-Verlag, Herdeberg Germany

[8] Gray R.S., 1995, A Transportable Agent System, In

proceedings of CIKM 95 Workshop on Intelligent

Information Agents

International Journal of Computer Applications (0975 – 8887)

Volume 17– No.7, March 2011

14

[9] Dierks T. and Rescorla E., 2006, The Transport Layer

Security Protocol Version, In RFC 4344, IETF

[10] Vigna G., 1998, Cryptographic Traces for Mobile

Agents, In Mobile Agent and Security, Vol., 1419 of

Lecture Notes in Computer Science, pp 137-153,

Springer Verlag

[11] Hohl F., 1998, Time Limited Blackbox Security:

Protecting Mobile Agent from Malicious Hosts, In

Mobile Agent and Security, Vol., 1419 of Lecture

Notes in Computer Science, pp 92-113, Springer

Verlag

[12] Sander T. and Tschudin C.F., 1998, Protecting Mobile

Agents against Malicious Host, In Mobile Agent and

Security, Vol., 1419 of Lecture Notes in Computer

Science, Springer Verlag

[13] Tan H.K. and Morean L 2001, Trust Relationships in a

Mobile Agent System, In Mobile Agent, Vol., 2240 of

Lecture Notes in Computer Science, pp 15-30,

Springer Verlag

[14] Carles Garrigne Ollivera Bellaterra, 2008,

Contribution to Mobile Agent Protection, PhD Thesis,

Universtat Ant Onoma, De Barcelona

[15] Wikipedia the Free Encyclopedia Serialization,

http://en.wikipedia.org/wiki/serialization

