
© 2011. Yusuf Lateef Oladimeji, Olusegun Folorunso, Akinwale Adio Taofeek, Adejumobi, A. I.This is a research/review paper,
distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License
http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Global Journal of Computer Science and Technology
Volume 11 Issue 15 Version 1.0 September 2011
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A Framework for Costing Service-Oriented Architecture (SOA)
Projects Using Work Breakdown Structure (WBS) Approach

By

Yusuf

Lateef Oladimeji, Olusegun Folorunso, Akinwale Adio Taofeek,

Adejumobi, A. I

University of Agriculture, Abeokuta, Ogun State, Nigeria

Abstract - With end users demanding faster response time and management demanding lower costs and more
flexibility, Service Oriented Architecture (SOA) projects are becoming more complex and brittle. Proper costing and
identification of feasible benefits of SOA projects are quickly becoming a significant influence in the mainstream of
all industries. SOA is intended to improve software interoperability by exposing dynamic applications as services.
Current SOA quality metrics pay little attention to service complexity as an important key design feature that impacts
other internal SOA quality attributes. Due to this complexity of SOA, cost and effort estimation for SOA-based
software development is more difficult than that of traditional software development. Unfortunately, there is little or no
effort about cost and effort estimation for SOA-based software. Traditional software cost estimation approaches are
inadequate to address the complex service-oriented systems. Although numerous sources expound on the technical
advantages of SOA as well as listing praises for their intuitive and qualitative benefits, until now no one has provided
a reliable and quantifiable result from SOA implementations currently in production. This paper proposes a novel
framework based on Work Breakdown Structure (WBS) approach for cost estimation of SOA-based software by
dealing separately with service parts. The WBS framework can help organizations simplify and regulate SOA
implementation cost estimation by explicit identification of SOA-specific tasks in the WBS. Furthermore, both cost
estimation modelling and software sizing work can be satisfied respectively by switching the corresponding metrics
within this framework. We provide an example case study to demonstrate proposed metrics and we also investigate
the benefit of SOA to its adopters.

Keywords : Service-Oriented Architecture (SOA), Software Cost Estimation, Work Breakdown Structure (WBS),

Framework, Return on Investment (ROI).

GJCST Classification : D.2.9, D.2.8

 A FrameworkforCostingService-OrientedArchitectureSOAProjects Using Work Breakdown Structure WBSApproach
 Strictly as per the compliance and regulations of:

A Framework for Costing Service-Oriented
Architecture (SOA) Projects Using Work
Breakdown Structure (WBS) Approach

Yusuf, Lateef Oladimejiα, Olusegun FolorunsoΩ, Akinwale, Adio Taofeekβ, Adejumobi, A. I

Abstract - With end users demanding faster response time and
management demanding lower costs and more flexibility,
Service Oriented Architecture (SOA) projects are becoming
more complex and brittle. Proper costing and identification of
feasible benefits of SOA projects are quickly becoming a
significant influence in the mainstream of all industries. SOA is
intended to improve software interoperability by exposing
dynamic applications as services. Current SOA quality metrics
pay little attention to service complexity as an important key
design feature that impacts other internal SOA quality
attributes. Due to this complexity of SOA, cost and effort
estimation for SOA-based software development is more
difficult than that of traditional software development.
Unfortunately, there is little or no effort about cost and effort
estimation for SOA-based software. Traditional software cost
estimation approaches are inadequate to address the
complex service-oriented systems. Although numerous
sources expound on the technical advantages of SOA as well
as listing praises for their intuitive and qualitative benefits, until
now no one has provided a reliable and quantifiable result
from SOA implementations currently in production. This paper
proposes a novel framework based on Work Breakdown
Structure (WBS) approach for cost estimation of SOA-based
software by dealing separately with service parts. The WBS
framework can help organizations simplify and regulate SOA
implementation cost estimation by explicit identification of
SOA-specific tasks in the WBS. Furthermore, both cost
estimation modelling and software sizing work can be satisfied
respectively by switching the corresponding metrics within this
framework. We provide an example case study to demonstrate
proposed metrics and we also investigate the benefit of SOA
to its adopters.
Keywords : Service-Oriented Architecture (SOA),
Software Cost Estimation, Work Breakdown Structure
(WBS), Framework, Return on Investment (ROI).

Author α

:

Department of Computer Science

University of Agriculture,
Abeokuta, Ogun State, Nigeria

GSM Phone no

: +234 803 403 7098;
E-mail

: truevisionconsulting@yahoo.com

Author Ω

:

Department of Computer Science

University of Agriculture,
Abeokuta, Ogun State,

Nigeria

GSM Phone no

: +234 803 564 0707;
E-mail

: folorunsolusegun@yahoo.com

Author

β

:

Department of Computer Science

University of Agriculture
Abeokuta, Ogun State, Nigeria

GSM Phone no

: +234 806 286 7612;
E-mail

: atakinwale@yahoo.com

Author :

Department of Electrical and Electronics Engineering

University of Agriculture Abeokuta, Ogun State, Nigeria

GSM Phone
no: +234 703 321 5455; E-mail

: engradejumobi@yahoo.com

I. INTRODUCTION

well-developed understanding of the Return on
Investment (ROI) for SOA has been a complex
undertaking [1]. This is due in part to the

deficiency in comprehensive historical data on which to
base any such model. For the most part, SOA often
exist as pilot projects than as full-blown production
systems, and even those rare production-quality
systems that do exist are too new for use in
understanding critical issues to the ROI equations, such
as reusability and redeployment. Most organizations that
want to build an SOA don’t have a clue on how to
approach the cost estimation process. In many cases,
they grossly underestimate the cost of their SOA, hoping
the management won’t notice, this is done to get
approval and reveal the higher costs later after
investment may have been made and too late to go
back. This is not a good management practice. The
other problem militating against building a
comprehensive cost model for SOA is the need to
separate the service cost that results in SOA from any
well-designed application and the specific or
incremental cost that obtains from a well designed SOA
application built on services architecture. Software cost
estimation for Service-Oriented Architecture (SOA)
development confronts more challenges than for
traditional software development. One of the main
reasons is the architectural difference in SOA compared
to traditional software development. Josuttis [2] has
pointed out that distributed processing would be
inevitably more complicated than non-distributed
processing, and any form of loose coupling will increase
complexity. Meanwhile, the more complexity involved in
a system, the more difficulty the designers or engineers
have to understand the implementation process and
thus the system itself [3]. In other words, people have to
devote more effort to accurate manipulations when
performing more complicated tasks. In practice, building
a true heterogeneous SOA for a wide range of operating
environments may take years of development time if the
company does not have sufficient SOA experience and
expertise [4]. It is difficult to foresee and justify the cost
and effort of developing an SOA application before the
project starts. The problem of SOA cost estimation has
not been addressed adequately in the existing literature.

A

© 2011 Global Journals Inc. (US)

35

20
11

Se
pt
em

be
r

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
 V

er
si
on

 I

ѱ

ψ

The current cost estimation approaches for traditional
software development are inadequate for complex
service-oriented software. For example, COCOMO II
cannot arrive at global cost approximation for the entire
SOA application development, and expert judgment
may easily fall into traps of uncertainty or bias because
of the complexity of the SOA. This paper proposes a
novel framework by employing a Work Breakdown
Structure (WBS) approach in an attempt to deal with
cost estimation problem for SOA based software
development. Within this WBS framework, services are
classified into three primitive types and one combined
type according to different development processes.
Cost estimation for developing primitive services can be
handled as sub-problems that are small and
independent enough to be solved. For combined
services, the division procedure will emerge recursively
until all the resulting separated services are primitive.
The cost and effort of service integration is then
calculated gradually following the reverse division
sequence. The application of the WBS cost estimation
framework is demonstrated using a case study. The
result shows that the proposed framework can simplify
and regulate the complicated development cost
estimation for SOA-based applications. The business
goals and objectives of SOA are to increase agility and
reduce costs while the technical goals and objectives
are to increase usability, improve maintainability and
reduce redundancy [5]. SOA hold out the promise for a
brave new world of applications development,
deployment, and reuse that many proponents believe
will usher in unprecedented levels of Return on
Investment (ROI) for a domain that has long suffered
from cost overruns and excessive, often unjustified
expenditures. The ability to lower the cost of integration
while improving the leveragability of key software and
business process assets are only a few of the reasons
why the ROI of service-oriented architectures and
composite applications is thought to herald a new
economic reality for IT and business development. Ease
of use and lower training costs, lower cost of
deployment, faster time to market, improved business
requirement matching, and better multi-channel
deployment are among the myriad reasons the
technologies are so eagerly awaited by business and IT
managers alike.

II. RELATED WORK

a) SOA Services
SOA is a collection of services with well-defined

interfaces and a shared communications model. A
service is a coarse-grained, discoverable, and self
contained software entity that interacts with applications
and other services through a loosely coupled, often
asynchronous, message-based communication model
[6]. A system or application is designed and
implemented to make use of these services. This

developed capability may itself provide services within
the overall SOA. The underlying idea of SOA is that it
would be

cheaper and faster to build or modify

applications by composing them out of limited-purpose
components that can communicate with each other
because the components strictly adhere to interface
rules [7]. The advent of the Internet and World Wide
Web (WWW) introduced a new wave of research on
collaborative product development environment
[8][9][10][11][12]. Yusuf et al., [13] Observed that the
Internet is no longer a simple network of computers but
a network of potential services in which the functional
views of services need to be clearly defined during the
design of an Internet-based distributed engineering
system. The most common form of SOA is that of Web
services in which all of the following apply: service
interfaces are described using Web Services Description
Language (WSSL), payload is transmitted using Simple
Object Access Protocol (SOAP) over Hypertext Transfer
Protocol (HTTP), and Universal Description, Discovery
and Integration (UDDI) is optionally used as the
directory service [14]. However, WSSL, SOAP, and
HTTP are not the only foundation on which an SOA can
be built. Other technologies such as CORBA and IBM's
Web sphere can be used as part of the messaging
backbone of an SOA.

 b)

Work Breakdown Structure
 A Work Breakdown Structure (WBS) is a

hierarchical decomposition (tree structure) of the work
required to accomplish a goal. It is developed by
starting with the end objective and successively re-
dividing it into manageable components in terms of size,
duration, and responsibility [15]. However, it

is often

done as a modification of an existing WBS for a similar
project. It is an essential starting input to both estimation
and to scheduling. In essence, it provides the chart of
accounts for a project. To know what something cost, it
needs to exist as a task in the WBS. In large projects,
the approach is quite complex and can be as much as
five or six levels deep. Usually, items at the same level of
hierarchy are in the order they are executed, although
this is not required. Traditionally, definition

of the WBS is

left to vendors with the integrated master schedule and
price proposal based upon it included as part of the
RFP response. More often than not, the organization of
the WBS in software development follows the traditional
“waterfall” method of

system development. The primary

constraint is that the WBS fulfils the requirements of the
statement of work [16]. Since the development of the
software within services is about the same as traditional
development, we suggest Breakdown of SOA into
Services from a WBS perspective.

36

20
11

Se
pt
em

be
r

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
 V

er
si
on

 I

A Framework for Costing Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure
(WBS) Approach

c) COCOMO II
COCOMO II (Constructive Cost Model) [17] is

one of the best-known and best-documented
algorithmic models, which allows organizations to

 estimate cost, effort, and schedule when planning new

software development activities. Tansey and Stroulia
[18] have attempted to use COCOMO II to estimate the
cost of creating and migrating services. They reported
that COCOMO II should be extended to accommodate
new characteristics of SOA based development.
COCOMO II is generally inadequate to accommodate
the cost estimation needs for SOA-based software
development. When considering the declarative
composition specifications, a fundamentally different
development process may be adopted in SOA-based
software. Based on the Internet technologies, SOA-
based software can be realized as a composition of
loosely coupled services with well-defined interfaces
and consistent communication protocols. These
services hide technical details, and are not restricted to
any specific technology. In other words, the service
implementation is programming language and platform
independent. Therefore, an SOA-based application
could comprise the combination of all possible
development strategies and development processes.
Consequently, although the COCOMO II

model has a
large number of coefficients such as effort multipliers
and scale factors, it is difficult to directly justify the cost
estimation for SOA-based software development. On the
other hand, considering the difference between
component orientation and service orientation [19], the
COCOMO II model by itself is inadequate to estimate
effort required when reusing service-oriented resources.
COCOMO II considers two types of reused
components, namely black-box components and white-
box components. Black-box components can be reused
without knowing the detailed code or making any
change to it, while white-box components have to be
modified with new code or integrated with other reused
components before it can be reused. Similarly, within
the SOA framework, there are black-box services that
can be adopted directly, and white-box services that
should be ported from legacy systems. Nevertheless,
taking black-box reuse for instance, the difference
between code-level and service-level reuse is
significant. Whether a code-level component is suitable
or not for reuse should be understood and revealed by
using reverse engineering or reengineering [20]
according to the real situation. Comparatively, the
contractually reusable and loosely coupled service can
be reused directly through service discovery techniques,
for example semantic annotation and quality of service.

d)

Function Point Analysis and Software Sizing

Size prediction for the constructed deliverables
has been identified as one of the key elements in any
software project estimation. SLOC (Source Line of
Code) and Function Point are the two predominant
sizing measures. Function Point measures software
system size through quantifying the amount of
functionality provided to the user in terms of the number

of inputs, outputs, inquires, and files. In practice,
Function Point can be used continuously throughout the
entire software development life cycle, which provides
the essential value of what the software is and what it
does with data from the user’s viewpoint. Santillo
attempts to use the Function Point method to measure
software size in an SOA environment [21]. After
comparing the effect of adopting the first and second
generation methods, that is the International Function
Point User’s Group (IFPUG) and Common Software
Measurement International Consortium (COSMIC)
respectively, Santillo identifies several critical issues. The
prominent one is that SOA is functionally different from
traditional software architectures, because the "function"
of a service should represent a real-world self-contained
business activity [2]. More issues appear when applying
IFPUG to software system size measurement. For
example, the effort of wrapping legacy code and data to
work as services cannot be assigned to any functional
size. Measuring with the COSMIC approach, on the
contrary, is supposed to satisfy the typical sizing
aspects of SOA-based software. However, there is a
lack of guidelines for practical application of COSMIC
measurement in SOA context. In addition to the
application

of Function Points, Liu et al. [22] use Service
Points to measure the size of SOA-based software. The
software size estimation is based on the sum of the
sizes of each service.

Where Pi

is an infrastructure factor with
empirical value that is related to

the supporting
infrastructure, technology and governance processes; P
represents a single specific service's estimated size that
varies with different service types, including existing
service, service built from existing resources, and
service built from

scratch. This approach implies that the
size of a service-oriented application depends
significantly on the service type. However, the
calculation of P for various services is not discussed in
detail.

e)

SMART and SMAT-AUS Framework

The “Service-Oriented Migration and Reuse
Technique” (SMART) was developed to assist
organizations in analyzing legacy capabilities for use as
services in an SOA. SMART was derived from the
Options Analysis for Reengineering (OAR) method
developed at the SEI that was successfully used to
support analysis of reuse potential for legacy
components [23]. SMART gathers a wide range of
information about legacy components, the target SOA,

© 2011 Global Journals Inc. (US)

37

20
11

Se
pt
em

be
r

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
 V

er
si
on

 I

A Framework for Costing Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure
(WBS) Approach

and potential services to produce a service migration
strategy as its primary product. However, SMART also
produces other outputs that are useful to an
organization whether or not it decides on migration.

Information-gathering activities are directed by the
Service Migration Interview Guide (SMIG). The SMIG
contains questions that directly address the gap

between the existing and target architecture, design,
and code, as well as questions concerning issues that
must be addressed in service migration efforts. Use of
the SMIG assures broad and consistent coverage of the
factors that influence the cost, effort, and risk involved in
migration to services. Unlike SMART, SMAT-AUS [24] is
a framework that is developed to determine the scope
and estimate cost and effort for SOA projects. This
framework reveals not only technical dimension but also
social, cultural,

and organizational dimensions of SOA
implementation. When applying the SMAT-AUS
framework to SOA-based software development,
Service Mining, Service Development, Service
Integration and SOA Application Development are
classified as separate SOA project types. For each SOA
project type, a set of methods, templates and cost
models and functions are used to support the cost and
effort estimation work for each project time which are
then used to generate the overall cost of an SOA project
(a combination of one

or more of the project types).
Except for the SMART (Software Engineering Institute's
Service Migration and Reuse Technique) method [25]
that can be adopted for service mining cost estimation,
currently there are no other metrics suitable for the
different projects beneath the SMAT-AUS framework.
Instead, some abstract cost-estimation-discussions
related to aforementioned project types can be found
through a literature review. Umar and Zordan [26] warn
that both gradual and sudden migration would be
expensive and risky so that costs and benefits must be
carefully weighed. Bosworth [27] gives a full
consideration about complexity and cost when
developing Web services. Liu et al. [22] directly suggest
that traditional methods can be used to estimate the
cost of building services from scratch. Since utilizing
solutions based on interoperable services is part of
service-oriented integration (SOI) and results in an SOI
structure, Erl [28] gives a bottom line of effort and cost
estimation for cross-application integration: "The cost
and effort of cross-application integration is significantly
lowered when applications being integrated are SOA-
compliant." A generic SOA application could be
sophisticated. But this can be handled in SMAT-AUS by
breaking the problem into more manageable pieces (i.e.
a combination of project types) however specifying how
all of these pieces are estimated and the procedure
required for practical estimation of software
development cost for SOA-based systems is still being
developed.

f)

ROI of

SOA Based on Traditional Component Reuse

Barry Boehm provided two useful formulas
when estimating the cost of software systems reuse.
One formula is from the provider’s point of view, while

the other is from consumer’s [29]; Provider-focused
formula:

Relative Cost of Writing for Reuse (RCWR) =
Cost of Developing Reusable Asset / Cost of Developing
Single-User Asset

Consumer’s formula

: Relative Cost of Reuse
(RCR) = Cost of Reuse Asset / Cost of Develop Asset
from Scratch

Poulin Jeffery [30] examined large-scale SOA
service providers to estimate the value ranges for these
formulas in practice. His data shows that RCWR ranges
between 1.15 and 2.0 with median of 1.2, while RCR
ranges between 0.15 and 0.80 with a median of 0.50. In
other words, Paulin work suggests that creating
reusable software component for a broad audience
takes more resources (15% to 100% more) than creating
a less generic point solution. The 20% of the total cost of
development directed towards reuse, a factor Poulin
calls Relative Cost of Reuse (RCR) would represent an
impressive number in the pre-object-oriented
development world, but in the world of service oriented
architectures and component application; it is believed
that 80% is a more accurate figure. This ability to reuse
the majority of the software development by an
organization is one of the key attributes of SOA
development, and while the number will vary greatly
from one development organization to another, it is our
believe that the early adopters will see this or an even
greater degree of reuse simply because initial SOA
development will target precisely those applications and
business processes that have the greater reuse
potential. Mili et al., [31] has published a variety of
RCWR factor values that have been developed since the
early 1990’s based on the experiences of a number of
sources. Discussion about cost estimation for SOA
implementation also appears in industry. Linthicum [32]
outlines some general guidelines for estimating the cost
of an SOA application. According to these guidelines,
the calculation of SOA cost can be expressed as a sum
of several cost analysis procedures.

Cost of SOA = (Cost of Data Complexity

 + Cost of Service Complexity

 +Cost of Process Complexity

 + Enabling Technology Solution)

Furthermore, Linthicum also provides some
detailed specification. For example, the basic element
Complexity of the Data Storage Technology is figured as
a percentage between 0% and 100% (Relational is 30%,
Object-Oriented is 60%, and ISAM is 80%).
Nevertheless, the other aspects of the calculation are
suggested to follow similar means without clarifying
essential matters. Meanwhile, Linthicum reminds that
the notable problem is that this approach is not a real

38

20
11

Se
pt
em

be
r

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
 V

er
si
on

 I

A Framework for Costing Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure
(WBS) Approach

metric. Additionally, SOA based software is inevitably
more complicated than traditional software [2]. It is
therefore doubtful that Data Complexity, System

Complexity, Service Complexity and Process Complexity
are sufficient to represent the complexity of SOA-based
systems. As shown, both academia and industry have
published little work relating to estimating costs for SOA-
based software. In particular, there is not a solution to
satisfy the development cost estimation for SOA-based
software. We attempt to address these issues by
providing a SOA cost estimation framework in this
paper.

III.

METHODOLOGY

a)

SOA-Based Software Cost Estimation Using Work
Breakdown Structure (WBS)

Approach

WBS approach is a “Division of labour” or
“Divide and

conquered” method which can be traced
back to as early as 200BC [33], when the Babylonian
reciprocal table of Inakibit-Anu was used to facilitate
searching and sorting numerical values. However, the
first description of the divide and conquered algorithm
appears in John Mauchly's article discussing its
application in computer sorting [33]. Nowadays, the
approach is applied widely in areas such as Parallel
Computing [34], Clustering Computing [35], Granular
Computing [36], and Huge Data Mining [37]. The
principle underlying WBS is shown in Figure 1. That is to
recursively decompose SOA into sub problems
(services) until all the sub-problems are sufficiently
simple enough, and then to solve the sub-problems
(cost the services). Resulting solutions (costs) are

then
recomposed to form an overall solution. Adopting this
principle will lead to different subroutines for different
sub-problems. Normally, some or all of the sub-
problems are of the same type as the input problem,
thus WBS procedure can be naturally expressed
recursively. The QuickSort [33] algorithm has such

Figure 1: Principle of Work Breakdown Structure (WBS)

The advantages of applying WBS approach to
SOA problems are numerous, and can be classified as
followings:

•

Structural Simplicity

: Profiting from perhaps the
simplest structuring technique, WBS is a high
priority strategy to resolve problems not only in the
SOA field but also in computing generally, politics
and sociology fields. No matter where the approach
is applied the solution structure can be expressed
explicitly in a program-like function such as:
Solution(x) is equivalent to:

IF IsBase(x)

Then SolveDirectly(x)

Else Compose(Solution(Decompose(x)))

Where x is the original problem that will be
solved through Solution

procedure, IsBase is used

to
verify whether the problem x is primitive or not, which
returns TRUE if x is a basic problem unit, or FALSE
otherwise. Solve

Directly presents the conquer
procedure. Decompose

is referred to as the
decomposing operation, while Compose is referred to
as the

composing operation

•

Computational Efficiency

: WBS can be used for
designing fast algorithms. In appropriate application
scenarios, the approach leads to asymptotically
optimal cost for solving the problems. A problem of
size N can be broken into a bounded number P of
sub-problems of size N/P step by step, and all the
basic sub-problems have constant-bounded size.
Then the algorithm will have O(NlogN) worst-case
program execution performance. Normally, the
consequence is more flexible because the size and
the number of tasks can be decided at run-time.

•

Parallelism

: Since sub-problems in the individual
division stage are logically and physically
independent, the WBS

approach can be naturally
executed in parallel procedures. For computing
problems, it is suitable for application in parallel
machines due not only to the independent problem
grains but also the efficient use of cache and deep
memory hierarchies [38]. In fact, it has been
considered as one of the well-known parallel
programming paradigms.

•

Capability of Solving Complexity

: Through
Dismantle of an overall goal into smaller and
independent sub-problems, the SS strategy can
provide adaptation scalability and variability, and
can be used in the areas of engineering to reduce
and

manage complexity. Those complicated cases,
such as resolutions for conceptually difficult
problems, and approximate algorithms for NP-hard
problems, are usually based on the divide and
conquer principle. Given these merits, WBS can be
considered a suitable and effective approach to
accommodate complex problems such as cost
estimation for SOA-based software development,

© 2011 Global Journals Inc. (US)

39

20
11

Se
pt
em

be
r

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
 V

er
si
on

 I

A Framework for Costing Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure
(WBS) Approach

where individual measures must be carried out
independently. The following sections discuss its
applications in SOA cost estimation.

procedure.

b)

Service Classification

Implementing SOA could be complex and
onerous, while complexity measurement for SOA-based
system is still an open question [39]. Chaos [40] claims
that the complexity is restricting some SOA
implementations. For the same reason, there are also
many challenges to estimate the cost and effort of SOA-
based software development. Fortunately, the major
advantages of SOA are mainly reusability and
composability with an emphasis on extensibility and
flexibility, at a high level of granularity and abstraction. In
other words, SOA-based software can be naturally
divided into a set of loosely coupled services. These
services can then be classified through their different
features. Krafzig et al. [41] has identified that
distinguishing services into classes is extremely helpful
when properly estimating the implementation and
maintenance cost, and the cost factors may vary
depending on the service type. However, there is no
standard way to categorize services. Service
classification can be different for different purposes, for
example differentiating services according to their target
audience [2], categorizing services through their
business roles and responsibilities [28], and classifying
services by using their background techniques and
protocols [42]. Services in our work are characterized as
follows:

•

Available Service (basic service type), when the
service already existing i.e. it may be provided by a
third party or inherited from legacy SOA based
systems.

•

Migrated Service (basic service type), is the service
to be generated through modifying or wrapping
reusable traditional software component(s).

•

New Service (basic service type), is the service to
be developed from scratch.

•

Combined Service is the service arising from the
combination of any above three types of basic
services or other combined services.

Through this type of classification, four different
development areas are identified in SOA projects. These
areas present both a decomposition process that results
in Service Discovery, Service Migration, and Service
Development, and a recomposition process that is
Service Integration. The cost estimation for overall SOA-
based software development can then be separated into
these smaller areas with corresponding metrics.
Therefore, the WBS approach is a feasible attempt for
SOA-based software cost estimation following this
development oriented service classification.

c)

WBS Cost Estimation Frameworks

The proposed cost estimation framework for
SOA-based software follows the WBS principle. Firstly,
through the service-oriented analysis, the SOA project is
divided into basic services recursively. Secondly,

different sets of metrics are adopted to satisfy the cost
and effort estimation for different service development
processes. The total cost and effort of the SOA project
will be calculated through the service integration
procedure as shown in Figure 2.

40

20
11

Se
pt
em

be
r

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
 V

er
si
on

 I

A Framework for Costing Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure
(WBS) Approach

Figure 2 : Procedure of SOA Project
Development Cost Estimation based on WBS.

C1 is the cost estimation model or software size
measurement used to accomplish modelling or sizing
work for discovering available services, C2 represents
migrating potential services, C3 represents developing
new services, and C4 is the cost estimation model or
size measurement for calculating the service integration
effort. The Decomposability condition depends on the
design and real situations whether the current service
should be further divided or developed as a whole. The
framework in Figure 2 presents the generic process of
SOA cost estimation using the WBS method. To
precisely describe the WBS based cost estimation for
SOA-based software development, the complete
process was expressed in pseudo code (Table 1). We
define the stage that service division occurs as the
service levels, and the combined service stands in a
higher level next to its successive component services.

Table 1:

Algorithm of SOA Project Development Cost
Estimation Based on WBS

//Treat the project at the highest-level service S to be
analyzed.

double SoaCostEstimation(service S) {

double cost = 0;

//Determine the type of S according to the design and
real situations.

switch (the type of S) {

case AVAILABLE:

cost += The cost of service discovery;

break;

case MIGRATABLE:

cost += The cost of service migration (service
wrapping);

break;

case NEW:

cost += The cost of service development;

break;

default:

//Divide S into component services at lower level.

for each component service in S

cost += SoaCostEstimation(component service);

cost += The cost of service integration for component
services in S;

break;

}

return cost;

}

© 2011 Global Journals Inc. (US)

41

20
11

Se
pt
em

be
r

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
 V

er
si
on

 I

A Framework for Costing Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure
(WBS) Approach

show the application process of the WBS based cost
estimation framework for SOA-based software
development in practice, which is demonstrated in the
next section.

 MPLEMENTATION

We employ Visualization RCD Beam for Service
Oriented Architecture (VisRCDBeam for SOA)
implemented by Yusuf et al [43] as an application case
study. There are two reasons for choosing this case:
The VisRCDBeam for SOA case study characterizes all
the service types listed in the previous section, and
there are a limited number of services which are
adequate for illustrative purpose in this paper.

The SOA project itself is treated at the highest-
level coarse-grain service, which is also the initial input
parameter of SoaCostEstimation function. Within the
body of SoaCostEstimation function, the cost of the
input service development will be estimated directly if
the service belongs to those three basic types, or
recursively calculated by analyzing and composing the
cost and effort of the development for component
services. When composing individual service
development costs into the overall SOA-based software
development cost, the strategy of supposed service
integration is progressed level-by-level instead of
integrating the services all at once. The reason of
adopting such a strategy is that, according to our work,
service integration occurring in different levels will make
different contributions to the total cost and effort of the
project development. A real example can be used to

Figure 3 : Redesigned Automation System of VRCDSOA

VisRCDBeam for SOA is a SOA tool for the
analysis and design of Reinforced Concrete Structures.
To improve the working efficiency of Reinforced
Concrete Designers, a service-oriented analysis was

conducted, which decomposed the business process
logic into series candidates. The tool revealed the
requirements of two business services in higher level
and four application services in lower level. The

IIV.

improved automation system is represented in Figure 3
following current disciplines:

a.

RCDBeam interface is the Legacy System Service
which is migrated from the previous project.

b.

Serviceability checking represents the Polling
Notification Service which is a coarse grain service
containing check for minimum and maximum area
of steel and check for deflection functional services.
The Transform Service is the RCD table for picking
bar sizes. These are new services that were
developed from scratch.

c.

Credit checking for authentication and security, and
AutoCAD interface for visualization purposes is
represented by the Metadata Checking Service.
They are the available service provided by third
party.

d.

“ VisRCDBeam for SOA” Service and VisRCDTable
Advisor Service are both combined services
containing all or some of above basic services. The
procedure of cost and effort estimation for
developing this redesigned service-oriented project
is illustrated in Figure 4. The detailed steps are
elaborated as follows:

42

20
11

Se
pt
em

be
r

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
 V

er
si
on

 I

A Framework for Costing Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure
(WBS) Approach

Figure 4 : Procedure of Cost and Effort Estimation for “VisRCDBeam for SOA” case study

a. Divide the Automation System into VisRCDBeam for
SOA Service and VisRCDTable Advisor Service.

b. Divide the VisRCDBeam for SOA Service into its four
basic component services.

c. Estimate the cost and effort of discovering the
available Metadata Checking Service (i.e., Credit
checking and AutoCAD services) by using
corresponding metrics C1.

d. Estimate the cost and effort of migrating the Legacy
System Service (i.e., RCDBeam) by using
corresponding metrics C2.

e. Estimate the cost and effort of developing the
Polling Notification Service (i.e., Serviceability

checking) and Transform Service (i.e., RCD Table)
by using corresponding metrics C3.

f. Estimate the cost and effort of integrating the above
four component services into the VisRCDBeam for
SOA Service by using corresponding metrics C4.

g. Divide the VisRCDTable Advisor Service into its two
basic component services.

h. Notice that Legacy System Service (i.e., RCDBeam)
and Transform Service (i.e., RCD Table) have both
been taken into account.

i. Estimate the cost and effort of mining the Legacy
System Service (i.e., RCDBeam) and Transform
Service (i.e., RCD Table) by using corresponding

metrics C1. Since these two services are in the
same project and can be directly identified, the cost
and effort here can be treated as zero in this special
case.

j.

Estimate the cost and effort of integrating the above
two component services into the VisRCDTable
Advisor

Service by using the corresponding metrics
C4.

k.

Estimate the cost and effort of integrating the
VisRCDBeam for SOA

Service and VisRCDTable
Advisor Service into the Automation System by
using the corresponding metrics C4.

l.

Sum up all the estimation results to calculate the
total cost and effort of the Automation System
development. Through the demonstration of the
VisRCDBeam for SOA

case, the WBS framework is
proven helpful for simplifying and regulating the
SOA-based software cost estimation. Moreover, all
the simplified cost estimation problems are
independent enough to be solved in parallel. The
uniform and explicit working procedure within this
WBS framework is then a feasible attempt to SOA
based software cost estimation.

© 2011 Global Journals Inc. (US)

43

20
11

Se
pt
em

be
r

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
 V

er
si
on

 I

A Framework for Costing Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure
(WBS) Approach

 OA ENEFITS

SOA benefit organizations in different ways,
depending on the respective goals and the manner in
which SOA is applied. We have generalized the list of
common benefits and certainly not exhaustive. It is
merely an indication of the potential this architectural
platform has to offer.

Improved integration (and intrinsic interoperability)
SOA can result in the creation of solutions that

consist of inherently interoperable services. The net
result is intrinsic interoperability, which turns a cross-
application integration project into less of a custom
development effort, and more of a modeling exercise.
The cost and effort of cross-application integration is
significantly lowered when applications being integrated
are SOA-compliant.

Inherent reuse
Service-orientation promotes the design of

services that are inherently reusable. Building services
to be inherently reusable results in a moderately
increased development effort and requires the use of
design standards. Subsequently leveraging reuse within
services lowers the cost and effort of building service-
oriented solutions.

c) Streamlined architectures and solutions
The concept of composition is another

fundamental part of SOA. It is not, however, limited to
the assembly of service collections into aggregate
services. The WS platform is based in its entirety on the
principle of composability. This aspect of service-
oriented architecture can lead to highly optimized

automation environments, where only the technologies
required actually become part of the architecture.
Realizing this benefit requires adherence to design
standards that govern allowable extensions within each
application environment. Benefits of streamlined
solutions and architectures include the potential for
reduced processing overhead and reduced skill-set
requirements (because technical resources require only
the knowledge of a given application, service, or service
extension).

d) Leveraging the legacy investment
The industry-wide acceptance of the Web

services technology set has spawned a large adapter
market, enabling many legacy environments to
participate in service-oriented integration architectures.
This allows IT departments to work toward a state of
federation, where previously isolated environments now
can interoperate without requiring the development of
expensive and sometimes fragile point-to-point
integration channels. Though still riddled with risks
relating mostly to how legacy back-ends must cope with
increased usage volumes, the ability to use what we
already have with service-oriented solutions that we are
building now and in the future is extremely attractive.
The cost and effort of integrating legacy and
contemporary solutions is lowered. The need for legacy
systems to be replaced is potentially lessened.

e) Establishing standardized XML data representation
On its most fundamental level, SOA is built

upon and driven by XML. As a result, an adoption of
SOA leads to the opportunity to fully leverage the XML
data representation platform. A standardized data
representation format (once fully established) can
reduce the underlying complexity of all affected
application environments. Past efforts to standardize
XML technologies have resulted in limited success, as
XML was either incorporated in an ad-hoc manner or on
an “as required” basis. These approaches severely
inhibited the potential benefits XML could introduce to
an organization. With contemporary SOA, establishing
XML data representation architecture becomes a
necessity, providing organizations the opportunity to
achieve their goal, the cost and effort of application
development is reduced after a proliferation of
standardized XML data representation is achieved.

f) Focused investment on communications
infrastructure

Because Web services establish a common
communications framework, SOA can centralize inter-
application and intra-application communication as part
of standard IT infrastructure. This allows organizations to
evolve enterprise-wide infrastructure by investing in a
single technology set responsible for communication.
The cost of scaling communications infrastructure is
reduced, as only one communications technology is
required to support the federated part of the enterprise.

b)

a)

S BV.

g)

“Best-of-breed” alternatives

Some of the harshest criticisms laid against IT
departments are related to the restrictions imposed by a
given technology platform on its ability to fulfill the
automation requirements of an organization’s business
areas. This can be due to the expense and

effort
required to realize the requested automation, or it may
be the result of limitations inherent within the technology
itself. Either way, IT departments are frequently required
to push back and limit or even reject requests to alter or
expand upon existing automation solutions. SOA won’t
solve these problems entirely, but it is expected to
increase empowerment of both business and IT
communities. A key feature of service-oriented
enterprise environments is the support of “best-of-
breed” technology. Because SOA establishes a vendor-
neutral communications framework, it frees IT
departments from being chained to a single proprietary
development and/or middleware platform. For any given
piece of automation that can expose an adequate
service interface, we now have a choice as to how we
want to build the service that implements it. The

44

20
11

Se
pt
em

be
r

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
 V

er
si
on

 I

A Framework for Costing Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure
(WBS) Approach

potential scope of business requirement fulfillment
increases, as does the quality of business automation.

h) Organizational agility
Agility is a quality inherent in just about any

aspect of the enterprise. A simple algorithm, a software
component, a solution, a platform, a process all of these
parts contain a measure of agility related to how they
are constructed, positioned, and leveraged. How
building blocks such as these can be realized and
maintained within existing financial and cultural
constraints ultimately determines the agility of the
organization as a whole. Much of service-orientation is
based on the assumption that what you build today will
evolve over time. One of the primary benefits of a well-
designed SOA is to protect organizations from the
impact of this evolution. When accommodating change
becomes the norm in distributed solution design,
qualities such as reuse and interoperability become
commonplace. The predictability of these qualities within
the enterprise leads to a reliable level of organizational
agility. However, all of this is only attainable through
proper design and standardization. Change can be
disruptive, expensive, and potentially damaging to
inflexible IT environments. Building automation solutions
and supporting infrastructure with the anticipation of
change seems to make a great deal of sense. A
standardized technical environment comprised of
loosely coupled, composable, and interoperable and
potentially reusable services establishes a more
adaptive automation environment that empowers IT
departments to more easily adjust to change. Further,
by abstracting business logic and technology into
specialized service layers, SOA can establish a loosely
coupled relationship between these two enterprise

domains. This allows each domain to evolve
independently and adapt to changes imposed by the
other, as required. Regardless of what parts of service-
oriented environments are leveraged, the increased
agility with which IT can respond to business process or
technology-related changes is significant. The cost and
effort to respond and adapt to business or technology-
related change is reduced.

VI. DISCUSSION

The aim of visRCDBeam for SOA is to upgrade
its automation system so that it could remain
competitive with other RCD tools and continue its
business relationship with its primary client. We
proceeded with a service-oriented analysis that
decomposed its business process logic into a series of
service candidates. This revealed the need for the
following potential services and service layers: (a) A
business service layer consisting of two tasks centric
business services namely visRCDBeam for SOA and
VisRCDTable Advisor, (b) An application service layer
comprised of four application services. Each business
process was represented with a task-centric business
service that would act as a controller for a layer of
application services. Reusability and extensibility in
particular were emphasized during the design of the
application services. We intend to have the initial SOA to
consist of services that supported both of its current
business processes, while being sufficiently extensible
to accommodate future requirements without too much
impact. To realize the visRCDBeam for SOA tool, we
compose these services into a two-level hierarchy where
the parents VisRCDBeam for SOA and VisRCDTable
advisor business services coordinate the execution of all
application services. Unlike many of the current cost
estimation approaches, the proposed WBS framework
uses a set of metrics to satisfy the development cost
estimation for SOA-based software. The WBS
concentrates on the software development process. It
list Service Discovery as an individual cost estimation
area as well as Service Migration, Service Development,
and Service Integration. The framework estimates overall
cost and effort through the independent estimation
activities in four different development areas of an SOA
application. WBS framework is generic and flexible by
switching different types of metrics; it could satisfy
different requirements of SOA-based software cost
estimation such as building cost estimation model,
measuring software size, and predicting the overall cost
ultimately. One issue is that there are currently few
available metrics for the detailed cost estimation for
SOA-based software development. Future research
should develop new metrics to resolve this issue.
Meanwhile, some reusable existing metrics can be
integrated into the proposed WBS framework, for
example Tansey and Stroulia's work [18] [related to

Service Development and SMART method [26] are
related to Service Migration. Over all, instead of trying to
enumerate SOA project types, the WBS framework
unifies and regulates the cost and effort estimation for
SOA-based software development.

VII.

CONCLUSION

Poor project management could bring failure to
SOA. Gone are the days when one person is the SOA
architect, developer, data architect, network architect
and security specialist. The complexity of SOA should
not be underestimated. Failure to implement and adhere
to SOA governance is an imperative issue; the
development effort is shifting from building services to
consuming services. Vendors could be allowed to drive
the architecture but relying too much on vendors can be
a disaster. Software cost estimation plays a vital role in
software development projects, especially for SOA-
based software development. Current cost estimation
approaches for SOA-based software are inadequate
due to the architectural difference and the complexity of
SOA applications. This paper offers a WBS cost

© 2011 Global Journals Inc. (US)

45

20
11

Se
pt
em

be
r

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
 V

er
si
on

 I

A Framework for Costing Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure
(WBS) Approach

estimation framework for SOA-based software
development. Based on the principle of Divide and
Conquer theory, this framework can be helpful for
simplifying the complexity of SOA cost estimation. By
hosting different sets of metrics, this generic framework
will be suitable not only for the complete cost estimation
work but also for the partial requirements, such as
building estimation model, and measuring the size of
SOA applications. We have fulfilled our original goals by
producing proper costing of an SOA project that
supports two service-oriented solutions. Online
transaction is now possible. New requirements can be
accommodated with minimal impact. The standard
application service layer will likely continue to offer
reusability functionalities to accommodate the fulfilment
of new requirements. And any functional gaps will likely
be addressed by extending the services without
significantly disrupting existing implementations.
Furthermore, should we decide to replace our task-
centric business services with an orchestration service
layer in the future, the abstraction established by the
existing application service layer will protect the
application services from having to undergo
redevelopment. We have established a legacy system
service (which is essentially a wrapper service for
graphics drawing) as part of its application service layer
it has opened up a generic and point that can facilitate
integration. There is an old saying that you cannot
manage what you cannot measure. By increasing the
number of “moving pieces” in IT solutions, SOA
increases the number of pieces that require
measurement. Given the relative immaturity of the SOA
paradigm, it is particularly important now, when best
practices have not yet been established and the

understanding of cause and effect is limited. Indeed, the
inability to collect cost and schedule data at the task
level may be part of the reason why so many case
studies in SOA only present project-level estimates of
averted cost.

REFERENCES REFERENCES REFERENCIAS

1. Cresswell, Anthony M., (2004). Return on Investment
In Information Technology: A Guide for Managers,
Center for Technology in Government, University at
Albany, August 2004.

2. Josuttis, N. M. (2007). SOA in Practice: The Art of
Distributed System Design, Sebastopol: O'Reilly
Media, Inc.

3. Cardoso, J. (2005). “How to Measure the Control-
Flow Complexity of Web Processes and Workflows
,” Workflow Handbook 2005, Layna Fischer, Apr.
2005, pp. 199-212.

5. Robert D. Bryan, Brand K. Niemann and Kartik
Mecheri (2011). Perspectives on SOA ROI.
Karsun Solutions Enterprise Modernization Expert.
Geoff Raines mitre.org/news/digests/ enterprise_
modernization/09_08/external.html.

6. Brown, A; Johnston, S., and Kelly, K. (2002). Using
Service-Oriented Architecture and Component-
Based Development to Build Web Service
Applications. Santa Clara, CA: Rational Software
Corporation.

7. LIoyd Brodsky (2010). Meanindful Cost-Benefit
Analysis for Service-Oriented Architecture Projects.
Proceedings of the Seventh Annual Acquisition
Research Symposium Thursday Sessions Volume II,
Monterey, California, U.S. Government or Federal
Rights License.

8. Maxfield, J., Fernando, T. and Dew, P. (1995). A
Distributed Virtual Environment for Concurrent
Engineering”, in IEEE Proceedings on Virtual Reality
Annual International Symposium, March 1-15,
Research Triangle Park, North Carolina, pp.162-170.

9. Dong, A and Agogino, A.M. (1998). Managing
design information in enterprise-wide CAD using
‘smart drawings’, Computer-Aided Design, 30 (6),
425-435.

10. Roy, U. and Kodkani, S.S. (1999). Product
modelling within the framework of the World Wide
Web, IIE Transactions, 31 (7), 667-677.

11. Huang, G.Q. and Mak, K.L. (2000). WeBid: A Web-
based Framework to Support Early Supplier

4. Jamil, E. (2009). “SOA in Asynchronous Many-to
One Heterogeneous Bi-Directional Data
Synchronization for Mission Critical Applications,”
We Do Web Sphere, Jul. 2009. [Online]. Available:
http://wedowebsphere.de/news/1528/SOA%20in%2
0Asynchronous%20Many-toone%20 Heterogeneous
%20BiDirectional%20Data%20 Synchronization%20.
[Accessed: Nov. 2009].

Involvement in New Product Development, Robotics
and Computer

Integrated Manufacturing, 16 (2-3),
169-179.

12.

Kan, H.Y., Duffy, V.G. and Su, C.J. (2001). An
Internet Virtual Reality Collaborative Environment for
Effective Product Design, Computers In Industry, 45
(2), 197-213.

13.

Yusuf Lateef Oladimeji, Olusegun Folorunso,
Akinwale Adio Taofeek and Adejumobi, I.A. (2011).
“Service Oriented Application in Agent Based Virtual
Knowledge Community”. Computer and Information
Science Journal, Vol. 4, No. 2; March 2011.

14.

Lewis, Grace and Wrage, Lutz. (2011). Approaches
to Constructive Interoperability (CMU/SEI-2004-TR-
020). Pittsburgh, PA: Software Engineering Institute,
Carnegie

Mellon University, 2005. http://www.

sei.

cmu.edu/publications/documents/04.reports/04tr02

0.html.

15.

Senn, James A. (1987). Information Systems in
Management. 3rd ed. Belmont, California:
Wadsworth Publishing.

16.

Mishan, E. J. (1976). Cost-Benefit Analysis. 2nd ed.
New York: Praeger Publishers.

46

20
11

Se
pt
em

be
r

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
 V

er
si
on

 I

A Framework for Costing Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure
(WBS) Approach

17. Boehm, B.W., Abts, C., Brown, A.W., Chulani, S.,
Clark, B.K., Horowitz, E. R., Madachy, D.J., Reifer,
and Steece, B. (2000). Software Cost Estimation
with COCOMO II. New Jersey: Prentice Hall PTR,
Aug. 2000.

18. Tansey, B. and Stroulia, E. (2007). “Valuating
Software Service Development: Integrating
COCOMO II and Real Options Theory,” Proc. the
First International Workshop on the Economics of
Software and Computation, IEEE Press, May 2007,
pp. 8-8, doi: 10.1109/ESC.2007.11.

19. Stojanovic Z. and Dahanayake, A. (2005). Service-
Oriented Software System Engineering: Challenges
and Practices. Hershey, PA: IGI Global, Apr. 2005.

20. Sommerville, I. (2006). Software Engineering, 8th
ed.. London: Addison Wesley, Jun. 2006.

21. Santillo, L. (2007). “Seizing and Sizing SOA
Application with COSMIC Function Points,” Proc.
the 4th Software Measurement European Forum,
Rome, Italy, May 2007.

22. Liu, J., Xu, Z., Qiao, J., and Lin, S. (2009). “A Defect
Prediction Model for Software Based on Service
Oriented Architecture using EXPERT COCOMO,”
Proc. Chinese Control and Decision Conference
(CCDC '09), IEEE Press, Jun. 2009, pp. 2591-2594,
doi: 10.1109/CCDC .2009. 5191800.

23. Bergey, J., O'Brien, L., and Smith, D. (2002). "Using
the Options Analysis for Reengineering (OAR)
Method for Mining Components for a Product Line,"
316-327. Software Product Lines: Proceedings of
the Second Software Product Line Conference
(SPLC2). San Diego, CA, August 19-22, 2002.
Berlin, Germany: Springer, 2002.

24. O'Brien, L. (2009). “A Framework for Scope, Cost
and Effort Estimation for Service Oriented
Architecture (SOA) Projects,” Proc. 20th Australian
Software Engineering Conference (ASWEC'09), IEEE
Press, Apr. 2009, pp. 101-110, doi:
10.1109/ASWEC.2009.35.

25. Lewis, G., Morris, E., O'Brien, L., Smith, D., and
Wrage, L. (2005). “SMART: The Service-Oriented
Migration and Reuse Technique,” CMU/SEI-2005-
TN-029, Software Engineering Institute, USA, Sept.
2005.

26. Umar, A. and Zordan, A. (2009). “Reengineering for
Service Oriented Architectures: A Strategic Decision
Model for Integration versus Migration,” Journal of
Systems and Software, vol. 82, Mar. 2009, pp. 448-
462, doi: 10.1016/j.jss.2008.07.047.

27. Bosworth, A. (2001). “Developing Web Services,”
Proc. 17th International Conference on Data
Engineering (ICDE 2001), IEEE Press, Apr. 2001,
pp. 477-481, doi: 10.1109/ICDE. 2001. 914861.

28. Erl, T. (2005). Service-Oriented Architecture:
Concepts, Technology, and Design. Crawfordsville:
Prentice Hall PTR, Aug. 2005.

29. Progress Actional (2008). “Web Services and
Reuse” http://www.actional.com/resources/
whitepapers/SOA-Worst-Practices-Vol-I/Web-
Services-Reuse.html 28 March 2008.

30. Poulin Jeffery (2006). “The ROI of SOA Relative to
Traditional Component Reuse,” Logic Library.

31. Mili, H., A. Mili, S. Yacoub and Addy, E., (2002).
Reuse-Based Software Engineering: Techniques,
Organization and Controls. John Wiley and Sons
Ltd.

32. Linthicum, D. (2007). “How Much Will Your SOA
Cost?,” SOAInstitute.org, Mar. 2007. [Online].
Available: http://www.soainstitute.org/articles/article/
article/how-much-willyour-soa-cost.html. [Accessed:
Nov. 2011].

33. Knuth, D. E. (1998). The Art of Computer
Programming: Volume 3, Sorting and Searching,
2nd ed.. Reading, MA: Addison-Wesley Professional
May 1998.

34. Bai, Y. and Ward, R. C. (2007). “A Parallel
Symmetric Block-Tridiagonal Divide-and-Conquer
Algorithm,” Transactions on Mathematical Software
(TOMS), vol. 33, Aug. 2007, pp. A25, doi:
10.1145/1268776.1268780.

35. Khalilian, M. F., Boroujeni, Z., Mustapha, N., and
Sulaiman, M. N. (2009). “KMeans Divide and
Conquer Clustering,” Proc. the 2nd International
Conference on Computer and Automation
Engineering (ICCAE 2009), IEEE Press, Mar. 2009,
pp. 306-309, doi: 10.1109/ICCAE.2009.59.

36. Lin, T. Y. (2009). “Divide and Conquer in Granular
Computing Topological Partitions,” Proc. Annual
Meeting of the North American Fuzzy Information

Processing Society (NAFIPS 2009), IEEE Press, Jun.
2005, pp. 282-285, doi: 10.1109/NAFIPS.2005.

1548548.

37.

Hu F., and Wang, G. (2008). “Huge Data Mining
Based on Rough Set Theory and Granular
Computing,” Proc. IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent
Agent Technology (WI-IAT'08), IEEE Press, Dec.
2008, pp. 655-658, doi: 10.1109/WIIAT.2008.84.

38.

Zhang, C. and Xue, B. (2009). “Divide-and-Conquer:
A Bubble Replacement for Low Level Caches,”
Proc. the 23rd International Conference on
Supercomputing (ICS’09), ACM, Jun. 2009, pp. 80-
89, doi: 10.1145/1542275.1542291.

39.

Norfolk, D. (2007). “SOA Innovation and Metrics,”
IT-Director.com, Dec. 2007. [Online]. Available:
http://www.itdirector.com/business/change/content.
php?cid=10146. [Accessed: Nov. 2009].

40.

Chaos, D. (2009). “SOA is not dead, but complexity
is killing some implementations,” Technoracle
(a.k.a. “Duane's World”), Jan. 2009. [Online].
Available: http://technoracle.blogspot.

com/2009/01

/soa-isnot-dead-but-complexity-is.html. [Accessed:
Jul. 2009].

© 2011 Global Journals Inc. (US)

47

20
11

Se
pt
em

be
r

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
 V

er
si
on

 I

A Framework for Costing Service

-

Oriented Architecture (SOA) Projects Using Work Breakdown Structure
(WBS) Approach

41. Krafzig, D., Banke, K., and Slama, D. (2004).
Enterprise SOA: Service-Oriented Architecture Best
Practices, Upper Saddle River: Prentice Hall PTR,
Nov. 2004.

42. Davies, J., Schorow, D., Ray, S. and Rieber, D.
(2008). The Definitive Guide to SOA: Oracle Service
Bus, 2nd ed.. New York: Apress, Sept. 2008.

43. Yusuf Lateef Oladimeji, Olusegun Folorunso,
Akinwale Adio Taofeek and Adejumobi, I.A. (2011).
“Visualizing and Assessing a Compositional
Approach to Service-Oriented Business Process
Design Using Unified Modelling Language (UML)”.
Computer and Information Science Journal, Vol. 4,
No. 3; May 2011.

48

20
11

Se
pt
em

be
r

© 2011 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
T
ec

hn
ol
og

y
 V

ol
um

e
X
I
Is
su

e
X
V
 V

er
si
on

 I

A Framework for Costing Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure
(WBS) Approach

This page is intentionally left blank

	A Framework for Costing Service-Oriented Architecture (SOA)Projects Using Work Breakdown Structure (WBS) Approach
	Author's
	Keywords
	I. INTRODUCTION
	II. RELATED WORK
	a) SOA Services
	b) Work Breakdown Structure
	c) COCOMO II
	d) Function Point Analysis and Software Sizing
	e) SMART and SMAT-AUS Framework
	f) ROI ofSOA Based on Traditional Component Reuse

	III. METHODOLOGY
	a) SOA-Based Software Cost Estimation Using WorkBreakdown Structure (WBS)Approach
	b) Service Classification
	c) WBS Cost Estimation Frameworks

	IV. IMPLEMENTATION
	V.SOA BENEFITS
	a) Improved integration (and intrinsic interoperability)
	b) Inherent reuse
	c) Streamlined architectures and solutions
	d) Leveraging the legacy investment
	e) Establishing standardized XML data representation
	f) Focused investment on communicationsinfrastructure
	g) “Best-of-breed” alternatives
	h) Organizational agility

	VI. DISCUSSION
	VII. CONCLUSION
	REFERENCES REFERENCES REFERENCIAS

