Course Code: AGE 504
Course Title: Farm Power II
Number of Units: 3 Units
Course Duration: Two Hours of Lecture and Three Hours of Practical per Week

Course Details
Course Coordinator: Dr. Olawale Usman Dairo B.Sc, M.Sc. PhD
Email: dairoou@unaab.edu.ng
Office Location: Room 2 Civil Engineering Building, COLENG
Other Lecturers: Engr. Ola I. A

Course Content:

Course Requirement:
Students must have a minimum 70% attendance and participate in all practical classes.

Reading List:
Hydraulic Systems and Controls

• Lift, control, of mounted and trailed implements
• Steering system, change gear ratio, use on remote systems not directly accessible
• Components
 – Pump, motor, valve, lines & connections, heat exchanger, sump, stored energy, control, fluid, Actuators, Filters
 – System may contain all or some of the components

 – Pump is the heart of the hydraulic system

Components Description

• Pump
• Accumulator
• Valves
 – Directional, Pressure, volume control
• Hydraulic fluid
• Reservoir/ sump usually attached with filters
• Heat Exchanger
• Lines & couplers strength dependent on diameter and inner reinforcement
• Actuator cylinders and motors for manifesting effect of hydraulic system
 – Single acting and double acting cylinders
HYDRAULIC CONTROLS

• Nudging
• Auto-position control
• Auto-draft control

• Power steering
 – Hydro-mechanical power
 – Hydrostatic power

TRACTION & TRACTION DEVICES

• Ability to develop drawbar pull through wheels and tracks called tractive devices
• Drawbar least efficient
• Wheels most predominant
• Traction depends on
 – Type of device
 – Amount of ballast
 – Lug design
 – Hitch mechanism

• Traction developed by interaction of tractive devices with soil
 – Theoretical, experimental & field tests to analyze and design tractive systems
Mohr-Coulomb failure Criteria

- Consider soil-plate of length l, width b acted upon by a normal force W, then force F required to shear off the plate of soil is given by

 \[F = Ac + W \tan \theta \]

- Applying eqn above to tracks and wheels will be

 \[P = \frac{W}{bL} \quad \text{and} \]

 \[P = \frac{W}{0.78bl} \]

- *** values for c and \(\Theta \) are rarely known.

Traction Performance Equations and Terms

- Traction efficiency

- TE = Output power/ Input power

 - Factors affecting

 - Steering, rolling resistance, slip, friction, deflection of tractive devices

- Net Tractive Efficiency

 - Net Pull/ Dynamic Normal Load
Analysis of Pull-torque slip relation for tractive devices on soil

• Conditions of Operations
 – Towed, driving wheel and self-propelled slip

 Slip ….. A motion loss at the tractive device wheel (or track) as a result of reactions developed from soil stress
 \[S = 1 - \frac{V_a}{V_t} \]

 Rolling Radius…… distance traveled per revolution of the tractive device divided by \(2\pi\) when operated on a hard surface with zero drawbar load

 The three condition Towed, Driving Wheel and self-propelled is as shown
USING DIMENSIONAL ANALYSIS

• Motion resistance ratio
 \[\rho = \frac{TF}{W} = 1.2/C_n + 0.04 \]

• Gross Tractive force
 \[\mu_g = 0.75(1 - e^{-0.3Cn^2}) \]

 – Net Traction co-efficient
 \[\mu = \mu_g \cdot 1 \]

 – Tractive Efficiency
 • \(TE = \frac{HV_a}{T\omega} \)

Traction Improvement Methods

• Weighting or Ballasting (addition of solution in wheels)
 – Prevent tipping over
 – Good steering control

• Traction Assist system
 – Built into mounted implement, hitch system of tractors
TRACTOR TEST & PERFORMANCES

- Power delivered through
 - Drive wheel or draft of drawbar
 - Rotary power thro Pto shaft or belt pulley
 - Hydraulic power thro hydraulic system
- Maximum drawbar: most useful performance criteria
- Fuel consumption
- Torque curve: For stability
- Drawbar pull Vs speed curve

- \[\text{DBP} = \frac{FS}{3.6} \text{ (kW)} \]
- \[\text{DBP} = \frac{FS}{375} \text{ (hp)} \]
- \[\text{PTOP} = \frac{2\pi TN}{60} \text{ (kW)} \]
- Frictional Power
- Indicated Power
- Gross Indicated Power

ENGINE TESTING

- Dynamometer: Power determination by independent measurement of force, time and distance thro which the force is moved
- Types
 - Transmission & Adsorption
 - Adsorption measures and converts power into some other form of energy
 - Pony dynamometer
 - Others are
 - Hydraulic, Air or fan, Electric d.c, shop type & spring dynamometer
Power Train

- Useful power transmitted thro power train
- Power train consists of
 - Traction & pto friction clutches
 - Transmission
 - Pto drives
 - Mechanical front wheel drive
 - Transmission & hydraulic pump drive
 - Spiral bevel gear set
 - Differentials
 - Final drive
 - Individual axle brakes
 - Rear axles

- **Most systems have 1, 2, 7 & 8**

TRANSMISSIONS

- Contained in a box shaped housing btw clutch & final drive
- Consists of gears, shafts and synchronizers coupled together to meet many speed and load requirements
- Provides the operator control over engine power to the rear axles
- Has four or six forward speeds with accompanying one or two reverse speeds…..
 - Recently there are > 10 speeds and several reverse speeds
- Ability to change speed ratios without stopping or dis-engagement…..under drive
Transmission Types

1. Sliding gear
2. Constant mesh
3. Synchronized or synchro-mesh
4. Power shift
5. Automatic
6. Hydrostatic
7. Hydro-mechanical
8. CVT COUNTERUOUS VARIABLE TRANSMISSION

1 – 4 are selective gear transmission
1 -3 are manually operated but not explicitly

Components

- Differentials
 - Allows the two rear wheels to turn at different speeds while power is transmitted to both wheels
- Final drives
 - A gear reduction located btw power train and drive wheel.
- Power-take-off shaft
 - Two standard speeds 540 ± 10rpm and 1000 ± 25rpm with 35mm diameter shaft
Operation, adjustment, maintenance & trouble shooting

• Adjustments
 – Fuel system
 – Ignition system
 – Valve train

• Maintenance
 – To prevent damage to engine and ensure continued good engine performance
 – Lubrication system
 – Cooling system
 – fuel/air system
 – Ignition system

Troubleshooting
Structured procedure to determine what is wrong with a machine or system
Engine fails to start, Over heating, Engine Knock, low oil pressure
Detonation in exhaust pipe, excessive fuel consumption, Smooky Exhaust

TRACTOR SELECTION & COST

• Power Selection
 – Use of Annual cost formula
 – By computer software

• Size selection

• Costs
 – Fixed Cost
 – Variable Cost

• Replacements
 – Damage of implement
 – Inadequate field capacity
 – Obsolescence
 – Performance of new machine is significantly superior
 – Anticipated costs for operating old machine exceeds cost for replacement