1. (a) Let R be any ring and let $A = R \times \mathbb{Z}$ where \mathbb{Z} is the set of integers. Define $+$ and \cdot in A by:

\[
(a, m) + (b, n) = (a + b, m + n),
\]
\[
(a, m) \cdot (b, n) = (ab + na + mb, mn), \forall a, b \in R \text{ and } m, n \in \mathbb{Z}.
\]

i. Show that $(A, +, \cdot)$ is a ring with $(0,1)$ as the unity.

ii. If $\phi : R \to A$ is a mapping defined by $\phi(a) = (a, 0) \forall a \in R$, show that ϕ is an injective homomorphism.

(b) i. Let R be any ring with unity and for each $a \in R$, let there exist $x \in R$ such that $a^2x = a$. Show that $ax = xa$ and also show that ax and xa are idempotents in $Z(R)$, the center of R.

ii. Let $B = \{0, 2, 4, 6, 8\}$. Show that B is a subring of \mathbb{Z}_{10}, the ring of integers modulo 10 with unity different from the unity of \mathbb{Z}_{10} and state the unity of B.

iii. Let R be a commutative ring and let a and b be nilpotent elements of R. Show that $(a + b)$ is also nilpotent.

(c) Let R be a ring and let I be a subset of R. Let

\[
r(I) = \{r \in R : Ir = 0\} \text{ and } l(I) = \{r \in R : rI = 0\}.
\]

i. Show that $r(I)$ and $l(I)$ are right and left ideals of R respectively.

ii. Given that A is an ideal in R, show that $r(I)$ and $l(I)$ are ideals in R.

(d) If $R = \mathbb{Z}$ and $I = (42)$, $J = (132)$ are ideals of R, compute $(I:J)$, the ideal quotient of I and J.

2. (a) i. Let I be an ideal of R and define the multiplication map $*: [R/I] \times R \to R/I$ by

\[
*(m + I, n) = mn + I.
\]

Show that R/I is a right R-module.

ii. Show that the direct product of two distinct R-modules is also an R-module.

iii. Let $(M_i)_{i \in I}$ be a family of R-submodules of an R-module M. Show that $\bigcap_{i \in I} M_i$ is also an R-submodule.
iv. Let M be an R-module and for $m \in M$, let K be a set defined by

$$K = \{rm + nm : r \in R, n \in \mathbb{Z}\}.$$

Show that K is an R-submodule of M.

(b) i. Let M be an R-module and let r be some fixed element of R. Show that the mapping $f : M \to M$ defined by $f(m) = rm \forall m \in M$ is an R-homomorphism.

ii. Let A and B be R-submodules of R-modules M and N respectively. Show that

$$[M \times N]/[A \times B] \cong [M/A] \times [N/B].$$

(c) Define the following:

i. Exact sequence

ii. Short exact sequence

iii. Split exact sequence.

iv. Cokernel

v. Coimage

(d) Draw a commutative diagram of R-modules with exact rows and columns.

(a) i. Let U and V be vector spaces over the field F. Show that

$$\text{Hom}_F(U, V) \cong F^{m \times n}.$$

ii. Compute the rank of the linear mapping $\phi : \mathcal{R}^5 \to \mathcal{R}^4$ given by

$$\phi(a, b, c, d, e) = (2a + 3b + c + 4e, 3a + b + 2c - d + e, 4a - b + 3c - 2d - 2e, 5a + 4b + 3c - d + 6e).$$

(b) Let $A = \begin{bmatrix} -x & 4 & -2 \\ -3 & 8 - x & 3 \\ 4 & -8 & -2 - x \end{bmatrix}$ be a given matrix. Compute:

i. the invariant factors of A over the ring $\mathbb{Q}[x]$,

ii. the rank of A.

(a) Let $\mathcal{B} = \{\sin x, \cos x, \sin 2x, \cos 2x\}$ and $V = \text{span}(B)$. In the space of all continuous functions on \mathcal{R}, V is a four-dimensional subspace with basis B. Define $\phi : V \times V \to \mathcal{R}$ by

$$\phi(f, g) = f'(0) \cdot g''(0).$$

Show that ϕ is a bilinear form on V and compute its matrix representation wrt the basis B.

(b) Let q be the quadratic form associated with the symmetric bilinear form f. Show that:

i. $2f(u, v) = q(u + v) - q(u) - q(v)$.

ii. $4f(u, v) = q(u + v) - q(u - v)$.

(c) Reduce the quadratic polynomial

$$q(a, b, c, d) = a^2 + 2ab + 2b^2 + 6c^2 - 4ac - 10bc + 11d^2 - 6ad - 2bd + 18cd$$

to a diagonal form and state its rank and signature.