1. (i) Let \{\phi_n\} \ (n = 1, 2, 3, \ldots) be an infinite set of functions on the interval \(a \leq x \leq b\). When is \{\phi_n\} said to be an \((\alpha)\) orthogonal system, \((\beta)\) orthonormal system with respect to the weight function \(r(x)\) defined on \(a \leq x \leq b\).

(ii) Show that if the functions \(g_1(x), g_2(x), \ldots\) form an orthogonal set on \(a \leq x \leq b\), then the functions \(g_1(ct+k), g_2(ct+k), \ldots\) where \(c > 0\) form an orthogonal set on the interval \(\frac{a-k}{c} \leq t \leq \frac{b-k}{c}\).

(b) Let \(\{P_n\}\), \(n = 1, 2, 3, \ldots\) be an infinite set of polynomial functions such that

(i) \(P_n\) is of degree \(n\), \(n = 0, 1, 2, 3, \ldots\)

(ii) \(P_n(1) = 1\), \(n = 0, 1, 2, 3, \ldots\) and,

(iii) the set \(\{P_n\}\) is an orthogonal system with respect to the weight function \(r\) such that \(r(x) = 1\) on the interval \(-1 \leq x \leq 1\).

Construct consecutively the members \(P_0, P_1, P_2\) and \(P_3\) of this set by writing

\[

P_0(x) = a_0,
\]

\[
P_1(x) = b_0 x + b_1,
\]

\[
P_2(x) = c_0 x^2 + c_1 x + c_2.
\]

\[
P_3(x) = d_0 x^3 + d_1 x^2 + d_2 x + d_3,
\]

and determining the constraints in each expression so that it has the value 1 at \(x = 1\) and is orthogonal to each of the preceding expressions with respect to \(r\) on \(-1 \leq x \leq 1\).

2. a. Given the second order differential equation

\[
a(x)y'' + b(x)y' + c(x)y = f(x). \tag{2.1}
\]

Obtain the self-adjoint form

\[
(p(x)\frac{dy}{dx})' + q(x)y = F(x) \tag{2.2}
\]

from (2.1). Hence or otherwise resolve the Legendre’s differential equation

\[
(1 - x^2)y'' - 2xy + n(n+1)y = 0
\]

in the form (2.2).

b. Show that the Legendre’s polynomials, \(P_n(x)\) are orthogonal with respect to the weight function, \(w(x) = 1\) over the interval \([-1, 1]\).

3. a. Find the eigenvalues and eigenfunctions of the given boundary value problem

\[
y'' + \lambda y = 0 \quad (\lambda > 0)
\]

\[
y(0) = 0, y'(1) = 0.
\]
b. Find the Fourier series of the sawtooth function
\[f(x) = \begin{cases}
 x + 1, & -1 \leq x \leq 0 \\
 1 - x, & 0 \leq x \leq 1
\end{cases} \]
\[f(x + 2) = f(x) \]
Hence determine a series for \(\pi^2 / 8 \).

SECTION B

4. a. Define Fourier integral transform for a function \(f(x) \).
b. Solve the boundary value problem
\[y''(x) - k^2 y(x) = -f(x), \quad -\infty < x < \infty \]
where \(k \) is a constant and \(f(x) \) is specified such that \(y(x), y'(x) \to 0 \) as \(|x| \to \infty \) using Fourier Integral transform.
c. Obtain the solution for the other form of problem in (b) written as
\[y''(x) + k^2 y(x) = -f(x), \quad -\infty < x < \infty. \]

5. a. State without proof the convolution theorem for Fourier transforms.
b. Given the Cauchy problem for wave equation
\[U_{tt} - c^2 U_{xx} = 0, \quad -\infty < x < \infty, t > 0 \]
where
\[U(x, 0) = f(x), \quad -\infty < x < \infty \]
\[U_t(x, 0) = g(x), \quad -\infty < x < \infty. \]
Show that
\[U(\lambda, 0) = F(\lambda) \quad \text{and} \quad \frac{\partial U(\lambda, 0)}{\partial t} = G(\lambda). \]
c. Obtain the complete solution of the problem in b.

6. a. State the Fourier's Integral theorem for the function \(f(x) \) and state sufficient conditions for the theorem.
b. Give a brief statement of the Parseval's identity for the functions \(f(x) \) and \(g(x) \).
c. Given the boundary value problem
\[U_{xx} + U_{yy} = 0, \quad 0 < x < \infty, 0 < y < \infty \]
with the boundary data
\[U(0, y) = 0, U(x, y) \to 0 \text{ as } x \to \infty, \text{ uniformly in } y, \]
\[U(x, \alpha) = 0, U(x, 0) = f(x). \]
Show that
\[\frac{\partial^2 U_s(\lambda, y)}{\partial y^2} - \lambda^2 U_s(\lambda, y) = 0. \]