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BOUNDARY LAYER FLOW

Introduction
In flow of real fluids
- No discontinuity of velocity

- No slip at solid surface

Free stream velocity

Boundary |

Layer
Thicknes|

/ VAN,

Boundary layer is the region in which the velocity increases rapidly from zero and
approaches the velocity of the main stream. Boundary layer is usually thin and velocity
gradient is high and shear stresses are important. In 1904 Ludwig Prandtl suggested that the
flow over an object can be considered in 2 patterns.

(1) The boundary layer where shear stresses are important.

(2) Beyond the boundary layer where velocity gradients are small and the effect of
viscosity is negligible. The flow there is essentially that of an ideal fluid.
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Description of the boundary layer

The simplest boundary layer to study is that formed in the flow along one side of a thin, smooth,
flat plate parallel to the direction of the oncoming fluid.

- No other solid surface is near
- Pressure is assumed uniform
- For ideal fluid, no velocity gradient

- Velocity gradients in a real fluid are due to viscous action near the surface.

The oncoming stream with velocity, U..  is retarded in the neighborhood of the surface and the
boundary layer begins at the leading edge of the plate and increases in thickness as more fluid is
slowed down.

F.g1.1 Boundary layer on the flat plate

U, Nominal limit of B.L U=0.99U,,

—_—> 7N
Transition /—

Short Turbulent U )
(Short) urbulen N
_— Y| —
Laminar "] v \ \ 4
X
Viscous layer Graph of vel. U against distance y
Leading edge from surface at point x.

The thickness of the boundary layer may be taken as that distance from the surface at which the
velocity reaches 99% of the velocity of the main stream. The flow in the first part of the boundary
layer is entirely laminar but developed into transition and finally into turbulent boundary layer. At
any distance x, from the leading edge of the plate the boundary layer thickness & is very small
compared with x.
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F.g1.2: Typical velocity distribution in laminar and turbulent boundary layers on a flat plate.

% Lamigr

f Turbulent
U
.

In laminar boundary layer, & oc X*°

In turbulent boundary layer, ¢ oc x**
P
When s =0
OX

Inertia force

Reynolds number, R, = Vi :
ISCOUS Torce

Viscous force, F, = y[a—uJA
oy

F, oc,u.%.L2 oc gl

Inertia force: momentum flow = mu
mu = puA.Acc pu’L2

212
:>Re=pUL, = R =—
puL U

Location of transition point depends on

- Roughness of the surface, roughness hastens transition.

- Main stream flow. Turbulence in main stream hasten transition
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b viscosity, u
density, p

For Re, < 10° , the laminar boundary layer is stable

Re,> 2 x 10”, transition occurs even if surface is smooth and main stream is laminar.

- Pressure gradient

If Z—PD 0, Re . 1S lowered
X

If Z—P<1O, Re i 1S raised
X

Vorticity in the Boundary Layer

Ay

P+%pv ? =constant =P, +0 (whenV =0)
Variation of Pitot tubepressure across streamlines indicates vorticity

Bernoulli’s Equation on ¢, and ¢

PO, =P+ 1V pUT (1.2)
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PO, =P+ 1) pU (1.3)

Po,~Po, = 1) plU2-U?)= 1 p(u, —ul{%) ................. (1.4)

[A_Pj: pOBY (1.5)

Ay Ay
ov ou
VA
2 _é[ax 8y]

oV
In the boundary layer, —— =0

OX
w, =20,
__y
oy
:_L[APOJ .................... (1.6)
1y
pU

In the limitas Ay — 0

Vorticity=20= p=—— e
PV oy

Therefore any variation of pressure in the boundary layer shows that the flow is rotational

The Thickness of the boundary layer

(1) Boundary layer thickness, & is defined as the distance from solid surface at which the
velocity reaches 99% of the main stream velocity.

(i1) Displacement thickness, &*

v

Ay

7

U
y]

l
|
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Let U be the velocity at distance y.

If there had been no boundary layer, the velocity would have been U,,,. Reduction in flow due to the
effect of the boundary layer = (U, —U )dy

Total reduction in mass flow rate caused by the boundary layer = pJ‘: (U n—U )dy

Displacement thickness is defined by
pumé* :'0.[0 (Um -U hy

5 =ij:(um—u)dy :J.:[I—Uijdy ....................... (1.7)

Area=| (U -U)dy
/
U u. -uU
A =/<_ "
y
5*
| /

To reduce the total volume flow rate of a frictionless fluid by the same amount that the boundary
layer does, the surface would have to be displaced outward by distance 6*. The concept of
displacement thickness often allows us to consider the main flow as that of the frictionless fluid
passing a displaced surface instead of an actual flow passing the actual surface.

(ii1) Momentum thickness, 6
Fluid passing through elemental area dy x1 carries momentum at a rate (,OU@/)J

In frictionless flow, the same mass would carry momentum flow rate (pUdy)J |

w
Total reduction in momentum flow rate due to boundary layer = .[0 p(U n—U )de

Momentum thickness 0, is defined by
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Velocity Profile and Shear Stress in the Boundary Layer
|

4_k_TurbuIent flow

1.07—
|

Vs
o | Laminar flow
[
ly
U, 1.0

-
—>
—>
> —>
__— Locus of points with zero velocity

—» —> —’;_
s 5 « (Separation streamline)
A B C

Point B = Separation point

v y—o=0 shear stress=0

From point B, the flow is no longer able to follow the contour of the surface and breaks away from it.

This phenomenon is termed separation.
Flow separation is caused by two factors
(i) Friction in the fluid (viscosity)

(ii) Adverse pressure gradient.
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Separation streamline is the line of zero velocity dividing the forward and reversed flow which leave he
surface at point B. Between the separation streamline and the wall are large irregular eddies as result of
a reverse flow. In this region energy is dissipated as heat in the Eddies so pressure remains constant

throughout the boundary B.

Laminar boundary layer is more susceptible to flow separation than the turbulent boundary layer since
the velocity gradient near the wall in turbulent boundary layer is higher than that of the laminar

boundary layer.

(ap
- The greater —
OX

) , the sooner separation occurs.

- Boundary layer thickens rapidly in an adverse pressure gradient.

Subsonic diffuser

Subsonic nozzle (

[T
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Von Karman Momentum Integral Equation of the Boundary Layer

It is an approximate method based on momentum equation.

Consider a 2-D steady flow over a flat plate.

_/Um— 4
C  Streamlin y
Edge of B.L =]
7, 0K
Vel. U pgrallel to AE
| |
A X E U

The boundary layer is of thickness 6, and its outer edge is represented by BD.
Let C be the point on AB produced which is on the same streamline as D

Consider ACDE as the control volume. Over surface AC the mean pressure is P

oP
Over surface ED mean pressure = P +| — |X

OX

For a unit depth perpendicular plane, net force on control volume is

P.(AC)—{P +[8PJ5X}ED + (P + %5x)(ED— AC)

x

The expression reduces to

oP
—%(&jﬁx(ED+ AC)
: oP
As & — 0, AC — ED and expressiontends to —(&j&(ED)

The total force on the control volume in x-direction

=—7, 0XK— 8_ XED)............. 1.9
= L AED) (1)
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s
The rate at which x-momentum is carried through AB= _[0 pU 2dy

5 O { ¢
Rate at which x-momentum is carried through ED = J;) pU *dy +6—(J.0 Jo,V) 2dyj5x
X

Net rate of increase of x-momentum of the fluid passing through the control volume is

_ { [ o 2dy+§( [ o 2dy)5x}—[ [ pudy + pU;(BC)}

%Uj puzony)ax_ PUZ(BC ). (1.10)

Mass flow rate across AC = Mass flow rate across ED.

Mass flow rate across BC = pU,,(BC) = Mass flow rate across ED — mass flow rate across AB

21 m
pU,f,(BC):Umg(J.:pUdyjéx ................ (1.11)

Substituting (1.11) in (1.10)

Rate of increase in x-momentum of fluid passing through the control

volume = %(E U 2dy)5x U, %{ [ ’ pUdyjéx ............... (1.12)

Equating this to the total x-force on the control volume and dividing through by 0x,

oP _ 0 o 0 4.2
TW+&(ED)_Um&j0 pUdy—&fopU A (1.13)

oP 0
oy In the boundary layer since fluid particle in y-direction is negligible.

Outside the boundary layer, it is approximately flow of an ideal fluid.

P+%pui = constant

P, , N
OX p“‘ax

Substituting for (1.14) in (1.13) and noting that
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ED =§=fdy and p =constant
0

Um 5 O 6 O ¢
= 7, =PV, jo dy=pUm&‘[0Udy—p&IOU2dy ............ (1.15)

0

Since Umﬁzi(umu)—u
OX  OX

ou,,
OX

Equation (1.15) becomes

09 oJ,, s 0 (% 2 oJ,, s
rw—p&jOUmUdy—p = J; Udy—p&IOU dy+p = IOUmdy ......... (1.16)
0 o oJ, s
TW:p&J‘O (U -Udy+p .~ | U] - —— (1.16a)

Since (Um —U) becomes zero at the edge of the boundary layer, the upper limit of both integrals may

be changed tooo. Then from the definition of the displacement and momentum thickness, equation
(1.16) simplifies to

*

oU
TU 0 e 1.17
Uy, (.17

T, = p%(U;H)er

Equation (1.17) is the momentum equation for the boundary layer.

Special case, if

(;—P =0,equation (1.14) shows that
X

If 5(;Jm =0 and equation (1.17 ) reduces to
X

. 90
pLz = (1.18)
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Laminar Boundary Layer on a smooth flat plate with zero pressure gradient

At low

_pUL
)7

Re

There are flows in which the laminar boundary is important in all laminar flow

T =,ug—; and 7, =,uz—; T,

Assuming
P®_ 0= U _ 0
OX OX

Substituting for

z,, and agxm =0 in equation (1.16)

We need velocity profile in the boundary layer.

Assume that u increase from y=0 to U = U, at y=0 at any value x
Qz%:QzO aty=0,Q=laty=¢

Then U/U,, is always the same function of Q at any value of x.

Fluid Mechanics (IV)
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Subtituting y = Q& and U =U_f(5) in equ(1.19)

. %u[%} - p 2 [uzs0- 1) @)l

Since f (Q) is assumed independent of x

= _[01(1— f(Q)f(Q)dy) may be written as a constant A and B = [M}
Q=0
The equation may be re —written as
ds

H 9 ()2 2
AU B=pL(U2AS)= pU2 AL 1.20
SUn pax( 2AS)=pU? ™ (1.20)

Multiplying by 8/U,, and integrating with respect to x

= (Bx=pU A"/ +conStant............ (1.21)

If x is measured from leading edge of plate, 5=0 when x=0, so the constant in equation (1.21) is equal to

Z€10.

P A
[ 2uBx _(2BY)? X
5_(pUmA] _(—Aj e (1.22)

U, X .
Where Re, = Pm , 1.e local Re ynold's number
MU

Fluid Mechanics (IV)
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From equations (1.20) and (1.22)

= pU? 249 _ pU2 A{ 248 J / X ( AB j/ .............. (1.23)

dx 2Re

Total friction force between x=0 and x=L for unit width on one side of the plate is

F = [ z,dx=[pU2A5]

The Dimensionless skin friction coefficient

Mean friction stress
Vo,
F

_ /(Lx I) _ F
Vpur 1pulL
1
c. 2( 2ABu ]4 _,(2AB)"
pU, L

Equation (1.22) shows that the laminar boundary layer

C. =

Re%

5ocx% and o o« 11
0

m

Equations (1.23) and (1.24) shows that

And the total drag force on the plate due to friction is
3 1
FocU r? and F o« LA

To evaluate 6 from equation (1.2) we need to calculate A and B. Hence the form of the function f (Q) is
required.

Simplest Assumption

Since U varies from 0 at wall to U,, at y=9, assume that T decreases linearly from 1, to 0 at y=5
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() — (1.26)

. oU . . y?
Setting T:“E and integrating (J =k| yo — 5 |+C

U=0 wheny=0=c=0

Putting y = Qd and dividingby xU

g

m

2
when Q =1, i: ko l
uJ 2

m

 ks?

=2 forU=U_

S
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Momentum Thickness

0=5[ 1(Q)1- f(QOHQ = AS
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There are other assumptions about f (), e.g.

Fluid Mechanics (IV)
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Turbulent boundary layer on a smooth flat plate with zero pressure gradients

Most of the boundary layer encountered in practice is turbulent for most of their length. Much
experimental information is available about turbulent flow in circular pipes and Prandtl suggested
that this could be used to study boundary layer on flat plate on the ground that the boundary layers

in the two cases are not essentially different.

Fully developed )pipe flow

>,\

Flat Plate

o)
> A
f y U ya Y
1. Yelocﬁy profile from extensive Prandtl suggested
gxperimental data
y Vmax = m
U yY?
TR a=o
a
max ]
Y.
- = (ij .............. (1.32)
U, o
wheren=7
2. Wall shear stress Wall shell stress
Prandtl considered a hydraulically smooth d=25
pipe. _
7, 0.079 U=0817U, oo (1.33)
1 o - A
7 Prandtl assumed that Blasins equation is valid if

Blasins equation where d =2a

U :%: mean velocity

_ 1 a
U :ELuzﬂ'(a—yby

=0.817U_
SA=2z(a—y)dy
0.2773p02| -2 . (1.34)
T, =Y. pUm(mj ................... .
a —Y
Yy,

we make these changes

A
7, =0.0225pU> x( le 5) .................. (1.35)

0
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Notes on the table

Equation (1.32) is applicable for moderate Reynolds number only, i.e.

(i)

M<1107

1

(ii) The equation is not applicable at the wall since

ouU 1
—:%Uwé Ay—%zoo aty=0
oy
The viscous sub layer is adjacent to the wall. Assume its velocity to be linear and tangency to the
seventh root ({/_) profile at the point where the viscous merges with the turbulent part of the

boundary layer.

U

00

Edge of reserved

™

Sub-layer

For the case under consideration

E:O :>8U°° =0
dx OX

Substituting equations (1.34) and (1.32) in (1.16a)

s 5 Y0\
o.ozzsm;(uiéj =p§IOUi 1—%} gj dy

Integrating from zero to & in equation (1.37) is justified since the thickness of the viscous sub layer is

smaller. Rearrange (1.36) to get
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Y v )"
5 4d550.231[u—j dx +constant............... (1.38)

w

Total derivative has replaced partial since & is a function of x only.

Integrating
Y
i5% =0.23 \(Lj X +constant
5 00

Assuming that the laminar portion of the boundary layer is small, Prandtl showed that reasonably good
results are obtained if the boundary layer is assumed to be turbulent from x=0 (leading edge).

This makes the constant in equation (1.38) to be zero and

Momentum and displacement thickness:

g u\u

o0 0

Substituting in the assumed velocity profile
) %
Ny y
o=[[2L] -|2L|
! @ (5] ’
Let% ~Q, -.dy=8&0

9:5[01(9% —Q%)dQ

1
9:5(19% _zg%j
8 9

0

7
N S 1.40
- (1.40)
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Similarly, the displacement thickness may be shown to be

5

g (1.41)

5 =
I o, 0463Re .’
X

1
Total drag force F on one side of the plate per unit width F = J‘O TWdX

Substituting from (1.35) and (1.39) in this equation

L

7 Ry )
F = 0.02250U ;{ULJ %0.370 4 x A(Mj dx

o0

b Ve
z0.036(),0Ui£ﬁj L

The overall skin-friction coefficient is

c, —mean friction _ i =0.072(Re, )75 weoveene (1.42)

Vol /puw

Measurement of drag force indicate that the value is move nearly

C, =0.074Re, ) 5 ........... (1.43)

(Re,)=5x10° to 107
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Lift and Drag on a Body

) 0 ‘
\

I

Skin friction drag , D, :frw sin@s.........(1.44)
T, = ,u(a—uj for flat plate
Y )y

Pressure drag D, = 5}3 Pcos@ds= formdrag .......... (1.45)

Profile Drag = Skin friction drag + Pressure drag = Dr + Dp

Potential flow Boundary layer
U,
—p
»-
»
>
>
>
Stagnation region Pitagnation Separation point

Fluid Mechanics (IV)
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Fig: Flow regimes around an immersed streamlined body

P+ %pHU ? =constant

\ 4
X

Bluff Body

Wake = Region of eddying motion downstream of the separation point.

For streamlined body, skin friction makes the major contribution to the total drag.
For Bluff Body, Pressure Drag >> Skin Friction Drag.

Totaldrag force

1 pu2A

A = Projected Area Perpendicular to oncoming stream

Drag coefficiert, C, =

For Airofoils

A = Product of Span and mean chord

T~

ord

For a Flat plate

A = Area of both sides of the plate.

Similar summation as in equation (1.44) and (1.45) can be done for the force components perpendicular
to U.. to give the lift.
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Where C; = Lift coefficient.

Resultant Force on the body

F=+vL>+D?

F=V pU2AJCI+C ...

Examples 1.

25

Calculate the laminary boundary layer and the displacement thickness at a distance of 2.5m from the

leading edge of a train moving at 6m/s. Take the kinematic viscosity of air as 1.55x10°m/s?

Solution
Re, :%
v
_ 6x25
1.55x107

Re, =9.68x10

Fromthe relationé =4'—9;
X Rexz
s 4.96x2.5
V9.68x10°
0 =12.60mm
%k _
0% 1 73Re )
X
St = 1.73x
JRe,
SH— 1.73x2.5
79.68x10°
=0.00440
=4.40mm
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Example 2

In example 1, consider that the free-stream turbine is such that transition takes place at a Reynolds
number predicted by Hansen, namely at 3.2x10°. Compute the boundary-layer thickness at transition for
laminar boundary layer and compare it to the boundary-layer thickness computed from turbulent flow
at the same position. Next, find the boundary-layer thickness at the leading position of the turbo train?

Solution

Re, iy =3.2%10°
— UXT
- L
_ U-Rejica

U
 1.55%x107° x3.2x10°

6

Re =Re

critical

X

=0.827m
Boundary layer thickness & for laminar bll.
5 _ 496
x JRe,

S— 4.96x0.827

32x10°
=7.25mm

Boundary layer thickness,o for turbulent bl
o 037
X Res
37X
_0.37x0.827

(3.2x10°)

=24.25mm

S~

5=
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Boundary layer thickness, o at leading edge

5= 0.371x
ReXA

X=2.5m

o 0.37x2.5

Re%
Re, = X = 923 967 741.04
v 1.55x10

5= 03TXZ3 4 05875
(967741.94)5

o =58.75mm

Fluid Mechanics (IV)
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CHAPTER 1: PRESSURE WAVES IN FLUIDS

1. ONE DIMENSIONAL FLOW
Strictly speaking, we need 3-D analysis to find complete solution to compressible flow equations. But

there are many flow problems that can be solved to a good-engineering approximation with the use of
1-D analysis.

H¢¢¢¢

Velocity profile in real flow Velocity profile in 1-D Flow

1-D flow- flow variables are functions of one

0

0
Space coordinatesi.e. — +—=0

ot

» Velocity is uniform across cross-sectional area.

— No velocity components in y or t direction.

In true 1-D flow, area changes are not allowed. The more gradual the area changes, the better the 1-D
approximation. When area changes are gradual, we talk of quasi one-dimensional.

Continuity equation:
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§£_+_apu4_6pv +—apw==0
ot ox oy 0z

For 1-D flow

a_p +aﬂ—0

ot OX

ot OX OX

For steady flow

pou udp _ g
OX OX

In gas dynamics, viscosity is normally neglected. Entering equation for 1-D flow is

ou Uou -0P
= +—=—"+f
rt rx  pox x

For steady flow

Udu 10P
— =——+f
OX POX X

For 1-D flow without body force, entering equation becomes:

Udu _laP

x pox

1.2 WAVE PROPAGATION IN COMPRESSIBLE MEDIA

Fluid Mechanics (IV)
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e\
ﬁ

Streamline pattern obtained for incompressible flow over a circular cylinder.

The fluid particles are able to sense the presence of the body before reaching it. This suggests the
existence of a signal mechanism whereby a fluid particle can be forewarned of the disturbance in the
flow ahead of it.

Velocity of signal waves sent from the body relative to the moving fluid is greater than the absolute fluid
velocity.

If fluid particles were to move faster than the signal waves, the fluid will not be able to sense the body
before actually reaching it, and very abrupt changes in velocity vector and others would occur

T
Gas 1

L
—> Longitidunal

wave

If piston is given a sudden push to the right, in the first instant, a layer of fluid piles up in front of the
piston and is compressed, the remainder of the gas will be unaffected. The compression waves created
by the piston then moves through the gas until all the gas is able to sense the movement of the piston. If
the impulse given to the piston is infinitesimally small, the wave is called a sound wave and the resultant
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compression wave move through the gas at a velocity equal to the speed of sound. For incompressible
medium, no change in density is possible. The velocity wave propagation is infinite. The higher the
compressibility, the lower will be the velocity of sound in that substance.

13 VELOCITY OF A PLANE PRESSURE PULSE

Consider an infinitesimal pressure wave proceeding along a pipe of uniform cross-section area.

Control

voluge
dv c cav 1|
— —f> stationary <+— N <—cC
gas o
/7777%%7777777777// /77777777@7777/
Wave ‘ Stationary
front wave
movin front
with
vel.C
P+dP

Pressure
Pressure

P+dP
P B>

Velocity
Qo
<
Velocity

C-dv

C
Observer
moving
with the
wavefront

Observer
at rest

Consider the control volume shown. Shear forces on the control volume at the wall is negligible
compared with pressure forces.

Momentum equation

Force = m dv
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Alp—(P+dP)]=m[(C=dV)-C | (1.1)

Where A is the cross sectional area

Simplifying and noting from continuity equation that: m= pAC .............
We'llget dP = pCdV ... (1.3)
dV = decrease invelocity of motion

Continuity equation written for the fluid on both sides of the wave front

PCA=(p+dp)C-dV)A.... (1.4)

Equation (1.4) reduces to

Combining (1.5) and (1.3) we get

c? :(8%:0)5 or C = (5%/))5 ................... (1.6)

32

The ratio dP/dp is written as in partial derivatives at constant entropy because the variation in pand T

are vanishingly small and so the process is nearly reversibly. The comparative rapidity of the process and

the smallness of the temperature of the variation makes the process nearly adiabatic.

For a perfect gas

Fluid Mechanics (IV)
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Putting (1.7) into log form

= InP =rlnp = constant............ (1.9)

Differentiating

dp _ rdP

P

(a_Pj P RT e (1.10)
. P

PP ger R (1.11)

C2
Yo, W

Where R = universal gas constant, W = molar weight.

1.4 Pressure field created by a moving point

Consider the pressure field by a point source of disturbance moving at uniform linear speed through a

compressible medium.

Fluid Mechanics (IV)



@) Incompressible flow, V/C =0

(b)  Subsonic flow V/C =1/2

(c)  Sonic flow V/C =1

Zone of silence

Zone of action

Fluid Mechanics (IV)
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(d) Supersonic motion, V/C >1

Fig Pressure pulse patterns compared for different values of the speed of the source compared with the
speed of the sound in the fluid.

Incompressible flow

When the medium is incompressible or when the speed of the moving point disturbance is small
compared with the speed of it sound, the pressure pulse spread uniformly in all direction.

Subsonic flow

The pressure disturbance is felt in all direction and at all point in space (Negatively dissipation due to
viscosity), but the pressure per time is asymmetrical.

Supersonic flow

All pressure disturbances are included in a curve which has the point source at its apex, and the effect of
the disturbance is not felt upstream of the point source. The curve within which the disturbances are
confirmed is called the mach come. For the case of the sonic flow v/c=1 and the mach come is a plane.

Fluid Mechanics (IV)
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Karman’s rules of supersonic flow

The rules apply exactly only for small disturbances, but are usually qualitatively applicable for large
disturbances.

Rule of forbidden signals

The effect of pressure changes produce by a body moving at a speed faster than sound cannot reach
point ahead of the body.

The zone of silence and the zone of action

A stationary source in a supersonic speed produces effect only on points that is on or inside the mach
curve extending downstream the mach come.

The rule of concentrated action

The pressure disturbance is largely concentrated in a neighborhood of the mach curve that forms the
outer limit of the zone of action. These rules explain why a projective moving at a supersonic speed
cannot be heard until the wave attached to the nose of the body passes over the ear of the observer;
and why the latter does occur, the noise is concentrated in a crack called sonic boom or sonic bang.

The mach nhumber and mach angle
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c’ C> rRT RandomK.E

3 Inertia Force
Pressure Forces due to compressibility
re

C*=rRT =—
Yo,

C =Ther mod ynamic property, C* = (8_Pj
op )

It varies from point to point
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o O
VAt
Sin o = C/V = I/M
g
~N
Subsonic flow
Shock wave
/
' /v
> ~
) >
Supersonic flow

On like the point projectile discussed previously, the body now present a finite disturbance to the flow.
The wave pattern obtained is a result of the addition of the individual mach waves emitted for each

point on the wave.This non-linear addition yields a compression shock wave across which causes finite
changes in velocity pressure and other flow properties.
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CHAPTER 2: ISENTROPIC FLOW OF A PERFECT GAS

We shall concern ourselves with compressible, isentropic flow through a varying area channels, such as
nozzles, diffusers, and turbine-blade passages

Assumptions

The flow is 1-D, steady, friction and heat transfer are negligible and change in pontetial energy and

gravitatimal forces are neglected.

Equation of motion

p /’/’/P*-dp
p —I | ptdp
v N\AmA
A V+dV

Continuity equation for steady in integral form

For this case

(p+dp)A+dA)V +dV )- pAV =0............ (2.2)

Simplifying and dividing through by pAV
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dP dA dVv (23)
p AV

Momentum equation for steady flow is

SFE=[ | \7(,0\7.d Kj ............ (2.4)

Only pressure forces act on the control volume

-1
~
PA > ‘ <} (P+dP)(A+dA)
N
™~
3
(P+dP/2)dA
Equation (2.4) yields
PA= (P + d%)dA—(P +dP)A+dA)
=V +dV)p+dpA+dAYV +dV)-pVA....... (2.5)
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Using equation (2.2) on the RHS of (2.5) and simplifying both sides:

dP + pvdV =0............ (2.6)

Energy equation:

LL (h +V%)pV «dA=0...... (2.7)

{(h +dh)+ (V +2dv ﬂ[(p +dp)V +dV )(A+dA)- (h +V%)pAV ]: 0

Simplifying this equation we get

Tds=dh—-dP/ .. (2.9)
i i . dh=dP
For isentropic flow: dh %o ........... (2.10)

Or dP+pVdV =0............... (2.11)

Same as (2.6)

Combining (2.3) and 2.6) we obtain
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Substituting (2.13) in (2.12)

dP _d_Aj

dP + pV 7| -
g (pcz A

But M :!
C

:(I—Mz)dP:pVZT .............. (2.14)

Equation (2.14) demonstrates the influence of M on the flow. For M<1, (1-M?) > 0, it implies that A
increases given pressure increase using (2.6),

Alincreases —pressure increases veto®ity decreases

\ \
M<1 —> M<1 /M>1 % /T
_— !

Subsonic flow
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Subsonic flow cannot be accelerated to velocity greater than the velocity of sound in a converging
nozzle. Converging nozzle behaves like a diffuser in supersonic flow. This is true irrespective of the
pressure difference imposed on the flow through the nozzle. If it is desire to accelerate a flow from
negligible velocity to supersonic velocity, a convergent — divergent channel must be used.

Stagnation properties and the use of tables

Stagnation enthalpy (total enthalpy), h; at a point in a flow is the enthalpy attained by bringing the flow
adiabatically to rest at that point.

Equation 2.8 states dh + dV% =0

Integrating both sides;

h+V%:Constant S (2.15)

Stagnation temperature (total temperature) is the temperature measured when the flow is brought

adiabatically to rest at a point. For a perfect gas, h, =C_T,
(ht - h): CP(Tt _T)
Substituting in equation (2.15)

2
T-Y
2C,

2

v +1(T
(2CPT j
ButCF,:i

T, :[[H(zrr—;)vzﬂT

+T

T
Equation (2.16) is tabulated for r= 1.4 as (—j vsM
t
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Example: If a perfect gas with r = 1.4 traveling at mach 3 with static temperature of 500k, the stagnation

temperature is

(/)= 1 _
T, _T( %j_sooxﬁml_mow

Stagnation Pressure P, at a point in a flow is defined as the pressure attained if the flow at that point is

brought to rest isentropically.

For a perfect gas

& _ (Tz )%_l
R

P _ (Tz )rr_l
P T,

Using (2.16), we obtain
1

TRV
5:(1+r_|\/|2j (217
P 2

gvs M is tabulated forr=1.4

t
V=0
P T‘

to 't

As flow accelerates in the nozzle, static temperature and pressure decreases.

If flow is adiabatic,
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h :V% =C,T, =Const.

l.e T, remains constant (irreversibility will affect pressure and not temperature)

If flow is reversible as well as adiabatic, both P; and T, are constant in the nozzle and remain equal to the
reservoir values

StaticPand T

Mass flow rate

m= pAV
P AM(rRT)?
RT
WhereP = i -
r-1
(1457w
2
m = pAV

= P_AM (rRT)"?

RT
and T :T—‘1
(1+r_M 2]
2
. D)
So thatm = — A(r)% M[[Hr—lM Zﬂ ................ (2.18a)
RT,)>
or m=—2 (M) (2.18b)
(RT,)?

)}

Where f(r,M)=M(r)5(1+%M2
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For Isentropic flow, P, and T, are constant and cross sectional area of flow A can be related to M.
Select the area at which M=1, as a reference area A*.

For steady flow,

mA=mA*
P P
So that — 1 Af(r,M)=—L_ A*{
o (RT ) r )(RT)A )
(rys 1) 7200
Where g(r,M )= /A (2.19)

Numerical values of A/A* vs M are shown in the table

For each value of A/A* there are two possible isentropic solutions; one subsonic, and the other
Supersonic. The minimum area or throat area occurat M =1
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Isentropic flow in a converging nozzle;

Pr B 7<%b
Tr
PAN
1
Pr L\T—%
~~—s5 4
N5
‘ >

Pressure distribution obtained in the nozzle for 6 different values of P,

Fluid stored in a large reservoir is to be discharged through a converging nozzle. For a constant reservoir
pressure Pr, determine m through nozzle as a function of the back pressure, P, of imposed on the

nozzle.
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0 Pu/P; 1.0
Mass flow rate through the nozzle vs P,/P,

P, = Stagnation pressure at the ambient air around nozzle exit.

For P, = P, (curve 1), there is no flow in the nozzle as P is in-variant with x. As Py is reduced below P,, m
increases and P reduces with x for the subsonic flow. The velocity at the nozzle exit plane increases as Py
is reduced until the velocity of sound is reached at the exit plane curve 4. With further reduction in Py, m
remains constant. With P,/P, greater than or equal to that corresponding to (curve 4), flow is able to
sense reduction in back pressure and adjust so that static pressure at the exit plane equal the back
pressure. With P,/P, less than that corresponding to curve 4, flow is unable to sense the reduction in
back pressure, so the flow through the nozzle remains as it was in curve 4. Therefore the exit plane
pressure is greater than P, and the flow must adjust to the back pressure by means of an expansion
occurring outside the nozzle. Reduction in P, below that of curve 4 cannot cause any more flow to be
induced through the nozzle. Under these conditions, the nozzle is said to be choked.

_ rI’—l
R:P[Hr—lej
2

To just choked the nozzle, M=1 at exit plane
P, 1)/
r— _
L =1+ —
R, 2

Forr=1.4, P,/P, =0.5383

This ratio below which the nozzle is choked is termed the critical pressure ratio.

Reference speeds

Maximum velocity corresponding to a given stagnation temperature is obtained when the absolute
temperature is zero.
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h =Cp T+ 4V
]
Vo= [2r lRTt]/2 .............. (2.20)

Since T =0, absolute, V = V5, corresponding M oo since C=0

Another useful reference velocity is the speed of sound at the stagnation temperature.

C, =(rRT,)........(2.21)

From steady flow energy equation

v =[2c, (T, -T))": =[i R(T, —T)}%

r-1
1 2r %
V*=[2C, (T, -T*)] = {ﬁ R(T, =T *)} .............. (2.23)
2r ) 1
V= L— R(T, =T *)} = (FRT*)2 o (2.24)
Which gives T*/T,=2/r+1 - (2.25)

Substituting for T* in (2.23)

r+

P
V*:C*:{ARTI}
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We can get the following relation between the three reference velocity

((::_jz(%ﬂ% =0.913 forr=1.4
V(r;njx - (%+1)y2 =224 forr=14

b2
Vinax — {(r_-’_lj} =245forr=14

50

2 2C; r+1
2h =V?4+—=_C?="2L =2 ———_C* (2.27)
r—1 r—1 r—1
The dimensionless velocity M*
eV
C %
M* has 2 disadvantages;
1. It is not proportional to the velocity alone
2. At high speed, it tends towards infinity; therefore it is often useful to work with a dimensionless

guantity obtained through dividing the flow velocity V by one of the 3 reference velocities. The most

useful of this is:

M* =V/C* = V/V*

N.B

M* is not the value of M at the local sonic condition like V¥, P*, T* etc but is rather defined as given

above.

From definition of M and M*
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. VP oVv:ocro oM

M TCx cltoe o
C c° C C

From (2.27)

v? L2 C* r+l

C* r-1C* r-1

Eliminating C2/C** from this pair of equations and rearranging

r+1 2
M*Z:% ............. (2.30)
1+ AM
Or
2 2
M *? = oM (2.31)
_r—1 2
1-f r+1M*

When M < 1, then M*< 1
When M =1, then M* =1
When M > 1, then M* > 1

When M =0, then M* =0

When M oo, then M * —){

Worked Example

An air stream flowing in a converging duct shown below; From a cross sectional area A; of 1.5m’to a
cross sectional area A, of 0.10 m>. If T,=500k, P,=150Kpa, V1:=100m/s find M,, P, and T,, assume steady
1-D isentropic flow.
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Solution

C=(rRT)”
100
M =
" (1.4x287x500)>
=0.223

From table B, at M =0.223,

A 2.7076,

A*
Thus A, =2.7076A*

Buti:E
A 15

A = &x 2.7076 =1.8051

Al

From table B,,M, =0.34

For isentropic flow, P, and T; are constant.

At M =0.223, P;/P+1 = 0.96685, T,/Ty; = 0.99041

P, =150/0.99041 = 504.841KPa
Ta = 500/0.99041 = 504.841KPa
At M, =0.34

P,/Py, =0.92312
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Thus P, =0.92312 x 155.143
=143.2156KPa

T,/T,, =0.97740

Thus T, =0.97740 x 50

=493.4316K
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CHAPTER 3: NORMAL SHOCK WAVES (NSW)

o L

Piston

Piston given velocity 0V to the right will give wave 1. Piston given increment in Velocity dV to the right
gives wave 2. Wave 2 travels at higher absolute velocity than wave 1 because gas in which wave 2
travels in warmer than that in which wave 1 travels. C = (rRT) 12

Wave 2 signal travels at velocity C relative to gas particles moving to the right at velocity 0V whereas
wave 1 travel through gas moving at zero velocity.

Suppose piston is given a finite velocity increment AV to the right. We can think that AV as being made
up of a large number of infinitesimal increments 0V - shock wave.

P 0 +—> T 9 « >

I ’_W\

E S
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d = shock thickness = 107

=

—p —> —>
~77
NSW Oblique SW; weaker than NSW

p ’7

For the case when piston is given velocity increment AV to left, we can think of it as very large number
of dV to the left. The wave smears out, i.e becomes less steep. Thus the creation of a finite expression

shock wave is impossible.

Equation of motion

The processes taking place in the shock waves are extremely complex. Temperature and velocity
gradients internal to the shock provide heat conduction and viscous dissipation that render the shock
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process internal irreversible. We can choose a control volume in such a way that we can write the flow

equation without regard to the complexity of the internal processes in the shock waves.

A A A
X [y \

Cc.v

Discontinuity

SFEE for the adiabatic process between X and Y

He+V7/2 = hv+Vv2/2 = hy----eeee- (3.1)

Where h; is the stagnation enthalpy on both sides of the NSW.Cross sectional area is the same on both
sides of the NSW since it is thin.

Continuity equ

m/A=prx=pyVy (32)

Applying the momentum theorem to the flow through the NSW
P—-P =M/, Voo 33

" ! A(Vy _VX) ( )
Combing (3.2) and (3.3)
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P+ pV = Py +py V2 —mmemmmemeeeee (3.4)

Equation of state for the fluid may be wirtten implicitly in the form

NSW in a perfect gas

For a perfect gas with constant specific heats undergoing an adiabatic process:

CoTx + VA2 = C,T, + V2 /2 = CyTy —mmemmmmemmmee (3.6)

Or Ttx = Tty

Equation (3.6) simplifies to

r—1 r—1
TX(1+Tij:Ty(1+Tij ................. (3.7)

Equation (3.4) becomes

2
Px+pr2=Px[l+pr?X]

=P (1+rM?2)
Or
P(+rM2)=P,(1+ M2 ). (3.8)

Combining (3.8), (3.7) and (3.2)

Px V= Py Vy

Fluid Mechanics (IV)

57



58

P, 1 P ]
E M, (rRT, ) = RTV M, (rRT, )"

X y

We can simplify this to get

_ /2
sz 147 1 M
1+rM, 2

By inspection, a trivial solution to equation (3.9) is My = M,. This solution corresponds to isentropic

flow in a constant area duct. From (3.8) and (3.7)

P,=Pxand T, =T,

Equation (3.9) can be solved to yield M y interms of M.

Squaring both sides of (3.9)

Mf(1+r2_1ij Mj(1+r2_1ij

(1+rM3)2 = (1+rM§)2 ............. (3.10)

Express in terms of quadratic in sz

M“[H—rzL}Mg(l—er)—L:o
2

y
M2(1+HMZJ
2 X

X

Where L =

(1+rMX2)2
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Solving the quadratic equation for M y

2,2
M? = " /(r_l) ................ (3.11)

2r M2 -1
(r-1)

X

For M,>1, M y is less than one and vice versa.

From equation (3.8)

P 1+rM;
P, [+rM;

l.e M, > 1 corresponds to the case of compression shock, and M, < 1 is the case of expansion shock.

Therefore the flow at x is supersonic while the flow at y is subsonic.

Substituting for M, from (3.11) in (3.7)

LEYVED B SFVER
T 2 r-1

T I — (3.13)

X

2(r-1)

Substituting for M, from (3.11) in (3.8)

P r+1 * r+l

X

TS VER i) (3.13)

The density ratio may be found from (3.12) and (3.13) and the perfect gas below:

Fluid Mechanics (IV)

59



60

The ratio of stagnation pressure is a pressure of the irreversibility in the shock process. It may be found

by observing that

R T i R 0 R 0
Ptx I:)y Px Ptx

_ rI’—l
Buti: 1+r—1|\/| ?
P 2

Substituting for Py/P, and P,/Py from (3.17) and P,/P, from (3.13) in (3.16), we get after algebraic

simplification

(r+1)M 7 s
2

1+r=1/Mm2
R, 2

P_

3 [(2er)/+1_(r—%+l)}l"l

Entropy change across the shock wave
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T P
S,~S,=Cyln yij—Rln(/Px]

S,—-S,=Cpln ——> | (3.19)

4
S,~-S,=Cpln “r_y .......... (3.20)
("e)"
P
SinceT,, =T,
- P
(SV—SX):—ln ij ................. (3.21)
R P

After substituting for Py,/Py from (3.18) in (3.21), we will obtain;

S, -S _ _
8,-8.)_ r [( 2 VTS U L Vi
R r-1 r+1 r+1 r-1 r+1

61

A careful study of (3.22 indicates for gas with 1 < r < 1.67, the entropy change is always positive when

M, > 1 and is always negative when M, < 1

(Sv'sx)/R ‘
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Shocks are possible

| / Shock impossible

M, < 1 gives shock rarefaction (or expansion shock). It is thus shown that an expansion shock is
impossible, since the 2™ law of thermodynamics for this (Sy-Sx) < 0) for adiabatic process.

Note: Equ (3.12), (3.13), (3.14) and (3.18) are presented in table B3

1psi=6.7KPa

Example

An upstream at mach 2 and pressure 10psi absolute and temperature 400K enters a diverging channel
with a ratio of exit area to inlet area of 3.0. Determine the back pressure necessary to produce a normal
shock in the channel at an area equal to twice the inlet area. Assume 1-D steady flow with the air
behaving as a perfect gas with constant specific heat. Assume isentropic flow, except for the normal
shock.
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M;=2.0 Xy | A¥*

Maxx = Mary

P, A%
L Rraar™ }°VM)
(RTtx) 2 (RTty) ?

But M =1 at A*,and A*,

=T, :Tty
s P AE = RyA*y

From table B2, At M = 2.0

A/A*, =1.69

A /A%, = (A/A). (A/A*)=(2.0) (1.69) = 3.39
M, =2.76
Using table B3 for NSW

At M, =2.76, Py,/P,, = 0.403
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A*,/A*, = 0.403

Ae/A*y = (AX/AI) (A|/A*x) (A*X/Ay)
=3.0x1.69x0.403

=2.04

Using table B2

M, =03

e

From B3, M y = 0.491

Exit pressure

Pe/Pi = (Pe/Pty)- (Pty/Ptx)-(Ptx/Pi)
- (0.940) (0.403) (1/0.128)

P. = 29.61 psia

Moving Normal shock

64

Many physical situations arise in which normal shock wave is moving, e.g. when an explosion occurs, re-

entry of a blunt body from space, closing a gas line valve suddenly.
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NSW

Normal shock wave propagating in still air at V;

V; = velocity of gases behind the wave

Fixed

VeV e— ! Ne—

Observer “sitting” on the SW

Consider the effects of observer velocity on static and stagnation properties. Static properties are
measured with an instrument moving at the absolute flow velocity. Thus they are independent of the
observer’s velocity.

Py/Px = Pb/ Pg/ Ty/Tx = Tb/Ta

Stagnation properties are measured by bringing the flow to rest.

Ttx > Tta: and Ptx > Pta
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Example

A normal shock moves at a constant velocity of 1500 ft/s into still air at 0°F and 10 psia. Determine the
static and stagnation condition present in the air atter passage of the wave.

Solution

V, —>» | 3506f¥/sec

For a stationary observer

Fixed

y X

(1500-V,) +— | €+1500ft/sec

For observer riding on the wave

M, = 1500/(rRTg.)"/?

T°R = °F + 459.67
T in ranking = 459.67, g. = 32.2ft/sec’, R = 53.3Btu/Ib°R

My=1.43
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T,/T.=1.27, T, = 584°R
P,/Px=2.22, P, = 22.2psia

P,/Py=1.74

From P,V,A, = P,\V,A,

V,/V, = (1500 - V,)/1500 = 1/1.74
1500 -V, = 861ft/sec

V, = 639ft/sec
Since the velocity of the observer does not affect static properties
P, =22.2psia =P,

T, =584°R=T,

v
M,=—9% =054

1

(ng ch )A

At M, = 0.54
T/T.=0.945, P/P, = 0.82
Py = 22.2/0.82 = 27.1psia

Tw = 584/0.945 = 619°R
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Application

1. Performance of converging — Diverging Nozzles
Throat

P, = Conit Py —

Pressure 1

|
F
\_

»
»

The nozzle may be attached at the inlet to a high pressure reservoir and allowed to discharge into the

atmosphere; alternatively, it may be attached at the outlet to a vacuum tank and allowed to draw its
supply from the atmosphere.

P, is fixed
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Find the pressure distribution in the nozzle for various values of back pressure P,
With P, = P, (curve 1) there is no flow in the nozzle.

When Py, is a little less than P,, subsonic flow is induced through the nozzle with pressure decreasing to
the divergent portion of the nozzle (curve 2.3). When the back pressure is lowered to that of curve 4,
sonic flow occurs at the nozzle throat. Further reduction in back pressures can no more increase the
mass flow rate through the nozzle. As the back pressure is reduced below that of curve 4 , a normal
shock appear in the nozzle just downstream of the throat(curve a).Further reduction in back pressure
causes the shock to move downstream (curve b) until for a low enough back pressure the normal shock
position itself at the nozzle exit plane (curve c). As the back pressure is lower below that of curve c, an
oblique shock wave appears at the exit plane.

Further reduction in P, causes the oblique wave to bend further away from the flow direction, thus
decreasing the shock strength until eventually the isentropic case is reached (curve 5).

Curve 5 corresponds to the design condition in which the flow is perfectly expanded in the nozzle to the
back pressure.

For back pressure below that of curve 5, exit plane pressure is greater than the back pressure. A
pressure decrease occurs outside the nozzle in the form of an expansion wave.
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e5dc b a

I:’b/Pr

Py
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Nozzle is said to be over expanded when P, < P, e.g between ¢ and 5. Nozzle is said to be under
expanded when P, > Py, e.g pressure below curve 5.
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CHAPTER 4:FLOW IN CONSTANT AREA DUCT WITH FRICTION (FANNO LINE FLOW)

Assumptions:

e 1-Dflow
e There is friction at the wall only (no internal friction)
e Wall friction is chief factor bringing about changes in flow properties.
e No heat transfer to or from the stream (approx. true for short ducts).
e No area charge along the duct

Fanno line flow = Adiabatic flow with as external work.

/ /777

Q =0, A = constant.
Energy equation, h + V,/2 = Const = h; ---------------- (4.2)
Continuity equation, pV = Const -------------------- (4.2)

From 1% and 2™ laws of thermodynamic

Tds =dh—dP/p =du - (P/p®) dP (4.3)

For a perfect gas
P/p=RT

Therefore ; ds = du/T — Rdp/p --------------- (4.4)

Assuming constant specific heats with state i as reference state in the flow.

S-S, =C, h{l—j— RInZ ... (4.5)

1
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Using (4.2)

T Y
s-&+cvmﬁFJ=Rmv- ............ (4.6)

1

From (4.1)

V =2(h, —h)”

N
Substitute for V from (4.7) in (4.6) and also for C,/R in terms of r

(ngd=h{%i+r;1m{a}_Ti

(Tt _Tl )
:mT+£§lmﬁp4ﬁ+Cth ............. (4.8)

Equation (4.8) can be plotted on a T-S diagram. The line obtained is called a Fanno line.

Subsonic

T P

p ENVAVIS 2y

Supersonic
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Consider point P at P, ds/dt =0

Differentiating equation (4.8)

dm L =) g arpeg

datlc,) T 2@T-1)

S (r=1)

T aT)
2T, -T)=(r=1JT

2
ButCP(Tt—T):V—

2
So that \é—:(r—l)'l'

P

OrV?=C,(r—-1JT =rRT at P,M =1

Thus in the T-S diagram the state of the fluid continually moves to the right till maximum entropy is
attained at the state corresponding to P. For subsonic flow mach number increase with axial distance to
1. For supersonic flow, the entrophy must again increase so that M decreases to 1 at P. Suppose the
duct is long enough for a flow initially subsonic to reach mach 1, and an additional length is added as
shown below:

A
A 4

h, M=1
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A

t

v

The flow Mach number for the given mass flow rate cannot go pass 1 without decreasing entropy. This is
impossible from 2" law of thermodynamic; hence an additional length brings about the reduction in
mass flow rate. The flow jumps to another fanno line as shown below.

M2<M1 m2<rh1 M=1

A

v

L,

my<m;,
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Corresponding to a given inlet subsonic M, there is a certain maximum duct length 1max, beyond which
a flow reduction occur.

Suppose the inlet flow is supersonic and the duct length is made greater than Imax required to produce
M =1 at the exit, the flow adjust to the additional length by means of a normal shock rather than a flow
reduction. The location of the shock in the duct is determined by the back pressure imposed on the
duct.

Determination of change of properties with actual duct length

WA,
I — —
v | vedv | J_, |
P — p+dp> PA (PLdp)A <J—
P ‘ P+dP | -
— —
«—

dx

7y = shear stress due due to wall friction

A, = lateral surface area over which the friction acts

A = cross sectional area of duct.
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Momentum equation for steady flow

ZszjCva(pV-d Kj

PA—(P+dP)A—z, A, = pAV(V +dV )—(pAV )eV ............ (4.9)
Define hydraulic diameter
D, = 4A/perimeter = four times the c.s.a of flow/wetted perimeter

For a circular duct

2
D, = %:D

For a square duct of side S

D, =487/ =S

A, = 4%L dx = Perimeter e dx........(4.10)

Substituting (4.10) in (4.9)

~AdP-7, dx4% = pAVAV .........(4.11)
h
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Coeff of friction

Tw

PV
f = f(Re,wall roughness)
Ty = YN (4.12)

f =

Substituting for t,, from (4.12) in (4.11)

V2 A
— AdP—4p— f(dx)— = pAVdV ............. (4.13)
2 D,
Dividing both sides by pA
2
d—P+ ™ o4f%+ rM AV _
P 2 D

Since D, =D for circular pipe,
Continuity equation, pV = Const which also gives

W N (4.15)
PRY,

From perfect gas equation of state
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(RT)*

Logarithmic differentiation of this equation

aM _dv dT

M 7— 2? ................
From (4.16)and (4.15)

dP —dv dT
—_———

P Vv T

Substituting for i/—v from (4.17)

dP dM dT _dT

— 1 =
P M 72T T
ordP__dM -y, dT

P M /2T

Substituting for dP/P from (4.18) and dV/V from (4.17) in (4.14)

dM dT rMm? dx
L Vi p At

M 27 2

dM dT er dx

4f =4
M 2T 2 D

But THI +r71 M ﬂ = Const.

(dM | dT
M(W ATJ

MZ
M

InT + 11{[1 + rT_l M Zﬂ — Const.

dT oMMy

1+ (r- 1/M2

Oor —

dMm

Substitute fordT from (4.20)in (4.19)

dT
T

MZ

_ 2dM
(y+rM7 _(r M A/I

M2

Combining terms

Fluid Mechanics (IV)
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Where the limit of integration are taken at (i), the section where the mach no is M and where x is
arbitrarily set to zero, and (ii) the section where mach no is unity and x is the maximum possible length
of duct (Imax).

Carrying out the integration

2lmax 1-M? r-1 (r+1)M?>
4 f RYE + o n 2(1+(r_12»M2 .............

Where f = ! I e fdx the mean friction coefficient
| max 70

Length of duct (required to pass from a given mach number, M; to a final mach number M, is found to
be

(411) :(4ﬂ manM] _(4“ manMz ................ (423)

D D D

To find PVS M

Substitute for dV/V using (4.17) and (4.20) and also for 4f dx/D from (4.21a) in (4.14) to get
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P 1-M> dM JpTMI(r-1M” gy

P =iy M LAY VER
2 2
Collecting terms
_ 2
dP__dM|1+(r-M*) (4.24)

P M Tl
2

Integrating between limits P and P*, where superscript *, denote the property at mach 1

P*d_P:_Il dM | 1+(r-=1)M?

LR TS VE
2

Using similar methods, the formulae which follow can be obtained

2
dv rM f dx (4.26)

- = 4f —

Vv 2il—|\/|2i D

dT _,,dC _ r(r-1)

dr _j,dC _ 4t
T AC 2(r-M?2) D

dp rM? dx
< - 4f —........ 4.28
P Zir—Mzi D (4.25)
2
AR M7 X (429)
P 2 D

After substituting for 4f dx/D in equation (4.26) — (4.29) they can be integrated to get

Fluid Mechanics (IV)
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P
%:M r+11M2 ............. (4.30)
2(1+r_j
2
T _C ot el (4.31)

prikvanv | e (4.32)
b2

o 2(1+”M2]

P‘* = ] (4.33)

Equation (4.22), (4.25), (4.30) — (4.32) are tabulated in table B4.

Example

82

Flow enter a constant area duct with a mach number of 0.6, static pressure 10psia and static
temperature 500°R, assume a duct length of 15”, diameter 1” and a friction coefficient of 0.005,

determine the mash number, static pressure and temperature at the duct outlet?

< i
« x1

}////// /7)) e
1

p
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AN
~
N
:

A
A

From B4, at M;=0.6, {%} =0.491
1

Actual 4—ﬂ =0.30
D

{(41"%)} {(4“%)} _4fl =0.491-0.300=0.191
D 2 D D

(4flmax)/D
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M2 =0.71

P %V/ 1.471
| LPE R 834
P | P 1.763
P *
P, =8.34psia

Tre] 10019
Lo | LA 097

T TV/ S99
T*

—

Flow through a nozzle and constant area duct in series

(a) Converging nozzle

Py
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v

P, is maintained constant.
Assume isentropic flow in the nozzle, and fanno flow in the duet, varying Py,.

As Py, is lower below P,, curves such as L and M are obtained, with pressure decreasing in both nozzle
and duct. When P, is decrease to that of curve n, mach 1 occur at duct exit. Further decrease in Py
cannot be sense by the reservoir for all P, below that of curve n and the mass flow rate remain the same
as that of curve n. The system is choked by the duct and not by the nozzle and the maximum mass flow
rate in this system is less than that for the same reservoir pressure with a converging nozzle only.

(b) Converging — diverging nozzle

\_/_L

Depending on the duct length the minimum pressure point or point of maximum mach no can occur at
the nottle throat or duct exit.
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Case 1: If the duct is long enough, the system reaches mach 1 first at the duct exit, the nozzle is not
choked. Super sonic flow is impossible.

v

Case 2: If duct is not long enough to give mach 1 at exit, supersonic flow can occur in the nozzle exit.
Once Py is low enough to produce mach 1 at the nozzle throat, the system is chocked by the nozzle and
no further increase in mass flow rate is possible. If the length of the duct is less than that which will
decelerate the flow to mach 1 at the duct exit (Imax) , supersonic flow occurs at the duct exit. Consider
changes in the duct flow as successively higher, P, values are chosen from P, = 0 absolute.

1
P —% >1 Py
Pr d —
c >
L
a
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| < Imax corresponding to M > 1 at duct inlet for a back pressure as low as that at curve a, an expansion
wave is formed at the duct exit. When P, is raised to be equal to that of curve b, the exit plane pressure
is equal to the back pressure. A further increase in P, yields obligue shock wave at the duct exit until
eventually, for a P, equal to that of curve d a normal shock stand at the duct exit. Increases in P, over

that cause the shock to move into duct.

For | > Imax corresponding to M > 1 at duct inlet

v
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A normal shock wave appears in the duct. For a back pressure that is very low ( close to Opascal) the
back pressure is less than the exit plane pressure (Pg) so that expansion waves must occur at the duct
exit with the exit plane mach number equal to 1. This is the case for curves a and b. For curve c, P, equal
P,. As Py, is raised above that of curve c,the normal shock moves towards the duct inlet, and the exit
mach number is subsonic with Pz = P,. For a P, that is high enough, the normal shock moves into the
nozzle eliminating supersonic flow in the duct.
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